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SUMMARY 

A Chebyshev collocation method for solving the unsteady two-dimensional Navier-Stokes equations in 
vorticity-streamfunction variables is presented and discussed. The discretization in time is obtained through 
a class of semi-implicit finite difference schemes. Thus at each time cycle the problem reduces to a Stokes-type 
problem which is solved by means of the influence matrix technique leading to the solution of Helmholtz-type 
equations with Dirichlet boundary conditions. Theoretical results on the stability of the method are given. 
Then a matrix diagonalization procedure for solving the algebraic system resulting from the Chebyshev 
collocation approximation of the Helmholtz equation is developed and its accuracy is tested. Numerical 
results are given for the Stokes and the Navier-Stokes equations. Finally the method is applied to a double- 
diffusive convection problem concerning the stability of a fluid stratified by salinity and heated from below. 
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1 ~ INTRODUCTION 

During the last ten years a number of spectral methods have been proposed for the numerical 
solution of the Navier-Stokes equations for incompressible fluids. Most of them concern the 
equations in velocity-pressure variables, with various ways of handling the incompressibility 
condition.'-" However, for two-dimensional flows the formulation of the Navier-Stokes 
equations using vorticity o and streamfunction $ as dependent variables may be considered. The 
main advantage of this formulation is the automatic satisfaction of the incompressibility 
condition. Moreover, the number of equations to be solved is less than the velocity-pressure 
formulation. This fact, which could seem to be of minor interest, becomes really important when a 
large number of modes and many time cycles are needed to describe the solution. The generally 
recognized drawback to the vorticity-streamfunction formulation is the iack of boundary 
conditions for the vorticity, while there are two conditions for the streamfunction. The common 
way to surmount this difficulty in finite difference methods is to define o on the boundary by the 
equation o = -A$; this has been applied to spectral methods.'2v l3  Other techniques based on 
Green's formula and used with success in finite differen~e'~. l 5  or finite element methodsI6 have 
been considered for spectral approximation to Stokes-type  problem^.'^^ * 

In the present Chebyshev collocation method the problem of boundary conditions is solved by 
means of the influence matrix technique. This technique was introduced3 to enforce the 
incompressibility condition at a boundary in a Chebyshev tau method for solving the primitive 
variable equations. Its application to the vorticity-streamfunction was considered in a study of 
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axisymmetrical spherical flow, so that the boundary value problem was actually one-dimensional. 
Also, ordinary differential equations modelling Stokes one-dimensional problems were solved by 
this te~hnique. '~  The application of the influence matrix technique to two-dimensional boundary 
problems is not straightforward. The main difficulty is of a mathematical nature and lies in the 
dimension of the spaces in which the solution must be looked for. In Reference 20 a hybrid 
Chebyshev tau collocation method was proposed in which the above difficulty was removed by 
approximating the streamfunction with more Chebyshev polynomials than the vorticity. In the 
pure collocation method proposed here the remedy consists in diminishing the number of 
boundary points on which the condition on the normal derivative of $ is enforced. Theoretical 
results obtained in Reference 21 and briefly exposed below show that the resulting numerical 
solution for $ is unique while the values of w are determined in a unique way at the inner 
collocation points. After completion of the solution the boundary values of w can be obtained by 
using the equation w = -A$, for example. 

In Section 2 the discretization in time of the Navier-Stokes equations is introduced. This is 
obtained through a three-parameter family of semi-implicit schemes where the diffusive term 
is considered in an implicit manner while the convective term is evaluated explicitly. Hence at each 
time step a Stokes-type problem has to be solved. The solution method of such a problem using 
the influence matrix technique is studied in Section 3; then the algorithm for the Navier-Stokes 
equations is described in Section 4. The influence matrix technique leads to the solution of 
Helmholtz and Poisson equations with Dirichlet conditions; hence a direct Helmholtz solver 
based on a matrix diagonalization procedure is developed in Section 5. Then Section 6 is devoted 
to numerical results for Poisson and Stokes equations. Theoretical results on the stability of the 
influence matrix method in an unsteady linear case are given in Section 7. Then in Section 8 
numerical results for the Navier-Stokes equations are presented. Finally Section 9 is devoted to 
the application of the method to the solution of the equations governing double-diffusive 
convection flows by considering the motion of a fluid salted and heated from below. 

2. THE NAVIER-STOKES EQUATIONS AND THEIR TEMPORAL 
DISCRETIZATION 

The two-dimensional unsteady Navier-Stokes equations for an incompressible fluid are written 
using the vorticity Q and the streamfunction $ as dependent variables: 

aW 
- + v * v w  - 
at 

v A w =f, 

Al//+o=O. (2) 
In these equations v is the kinematic viscosity andfis  a given forcing term. The velocity vector 
V =(u, u) is related to the streamfunction $ by 

u = a w y ,  v =  -aglax (3) 
and to the vorticity o by 

W = au/ax - au/ay. (4) 
Equations (1) and (2) are solved in a square domain D :  - 1 <x, y <  1, with the boundary 

conditions 
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where g and h are given. The function g must satisfy the total flux condition 
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jr (Vg.t)ds=O. 

In the above equations n and t are the unit vectors respectively 
boundary I' of the domain I ) .  

The initial condition at t = O  is 

v = v o  = (240, UO) (V-VO = 0); 

then 
0 = wo = auo/ax - auo/ay.  

normal and tangent to the 

(6) 

(7) 
The time discretization makes use of a finite difference scheme. More precisely, we consider a 

family of schemes parametrized with E, 8,, 6, and a, so that the system (I) ,  (2) is discretized 
according to 

- v [8 1 Ad"' + 8, Ad' + (1 - 81 - 8 2 ) A ~ "  - '1 =fn+', A $" + + 0"' ' = 0, (8) 

where A =V*Vw. In these equations o"' N O ( X ,  y ,  mAt) and I,P= $(x,  y ,  rnAt). The scheme (8) is 
first-order accurate whatever the values of the parameters and is second-order accurate if 

€=2(201 + 8, - 1 ) =  2a. (9) 

The case E =  1,8, = 1/2,8,= 1/2 corresponds to the usual Adams-Bashforth/Crank-Nicolson 
(AB/CN) scheme and the case ~ = 2 ,  8, = 1, 8, = O  gives the Adams-Bashforth/second-order 
backward Euler (AB/2BE) scheme introduced in Reference 20 for the Navier-Stokes equations. 
The stability of the above family of schemes (assuming 8, + 8, = 1) applied to the solution of the 
one-dimensional advection-diffusion equation with a Chebyshev collocation method has been 
studied in Reference 6. The stability in the case of the Stokes equations will be considered later. 

At each time cycle we have to solve the following Stokes-type problem: 

with the boundary conditions 

In (10) the right-hand side F contains all terms of (8) at  time levels n and n - 1 and the forcing term 
f" '" ;  finally 

g=- * + €  >o. 
28,vAt 

To start the integration (n = 0) we assume w - = o0 and A - =Ao so that the scheme gives the 
solution at t=2At/3 rather than at At. The solution at t = A t  is then defined by a linear 
extrapolation. 

In the next section we describe a direct solver for the problem (lo), (11) using a Chebyshev 
collocation method. 
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3. A CHEBYSHEV COLLOCATION STOKES SOLVER 

Because the problem (lo), (11) has to be solved a large number of times in the course of a time- 
dependent solution, the Stokes solver must be efficient. First of all, this is obtained by considering 
a direct method avoiding any iterative procedure. Moreover, the influence matrix technique 
considered here reduces the problem to the solution of some number of Helmholtz and Poisson 
equations with Dirichlet conditions. Most of these Helmholtz-type problems are time- 
independent and are solved once and for all before starting integration in time. 

The solution of the Helmholtz-type problems is obtained through a direct method based on a 
one-off matrix diagonalization process. Hence at each time cycle the solution of the Navier-Stokes 
equations reduces to the evaluation of matrix products, which can be performed efficiently on a 
vector computer. The Helmholtz solver will be described in the next section. In the present section 
we explain the influence matrix technique for solving (lo), (1 l t a  technique which was presented 
briefly in Reference 22. 

For simplicity we write (lo), (1 1) omitting the superscript n+ 1 so that the system reads 

4 Wenote that r=ui=l  Ti(seeFigure 1); theng(,,=gi,hlri=hi, 11i14.Thefunctionsgandhare 
assumed to satisfy the following conditions of compatibility at the corners of D. 

(i) Continuity of g 

Figure 1. The domain D and its boundary r=uy=, rt. 
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(iii) Crossed derivatives 

h; (1) = A; (I), h ; ( - l ) =  -hk(l) ,  
h;( l )=-h;(- l ) ,  h i ( - l ) = h ; ( - l ) .  

These conditions ensure that the trace of $ and of its derivatives on the boundary r are defined at  
the corners, and also that the equality d2$/dxdy=d2$/dydx is satisfied at the corners. 

The problem (12), (13) is approximated by means of a collocation me'thod. Let PN be the set of 
real polynomials of degree at most equal to N and denote by 

x,=COS(kz/N), OSkSN,  (1 7) 
the Chebyshev collocation points. In terms of Chebyshev polynomial expansion, a function $(x) 
approximate with the polynomial $, E P, can be written as 

and the points xk defined by (17) are the extrema of the Chebyshev polynomial TN(x). Then, there 
exist coefficients dg'(k,  i), OSi, k l N ,  such that the pth derivative is expressed by 

dP4N(Xk) = f d#"(k, j ) $ N ( x j ) .  
d x P  j = o  

The expressions for d#') for the first and second derivatives ( p =  1,2) are given in the Appendix. 

D,= (Xk, y,; 1 I k<N, 1 I l I M  }, 
where xk = cos(kz/N), y ,  = cos(ln/M); and by T, the set of collocation points on the boundary. 
Finally, we denote by PN, the set of polynomials of degree at most equal to N in x and to M in y.  
Then the Chebyshev collocation approximation of the system (12), (13) consists in searching the 

Let us define now by D, the set of collocation points in the interior of D: 

C O N , M E P , , M  and $ N , M E P N , M  solution of problem P: 

The various derivatives occurring in this system are expressed by formulae of the type (1 9), so that 
equations (20), (21) form an algebraic system for the values of w,, and $ N ,  at the collocation 
points. 

To solve problem P we decompose its solution (o,, M ,  $ N ,  M )  according to 
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The pair (ON, M ,  $,, M )  is the solution of problem P:  

The solution of problem reduces to the successive solution of two elliptic equations with 
Dirichlet boundary conditions. The difficulty remains in the solution of problem P. To solve this 
problem we are looking for a Dirichlet boundary condition p for ON, such that if 

and 

then 

a q N , , / a n = h  on rc. (28) 
This problem, consisting of (26H28), will be called problem Po. We note that p l r i = p i ,  1 1 i ~ 4 ,  so 
that p l ,  p , ~ [ I p ,  and p 2 ,  p 4 d P M .  Furthermore, the conditions of compatibility (14) are satisfied by 
the p i ;  thus p belongs to a vector space of dimension 2(N + M )  which will be denoted by E N ,  M .  

In fact the problem Po is not well posed because we can find boundary conditions p such that if 

The proof of this assertion is too long to be reproduced here. We only outline the main steps of the 
proof and refer to Reference 21 for details of the analysis. 

composed of the boundary conditions p such 
that (29), (30) are satisfied. For that we consider PEEN, 

We have to define the vector space GN, c EN, 
and introduce the notations 

Now we consider the polynomial wff, M ~ P , ,  
the solution ON,  
the equations 

such that off, 
of (29) at inner collocation points D,. Therefore this polynomial off, 

= O  on r, and which coincides with 
satisfies 

where 
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for 1 I k I N - 1, 1 5 1 I M - 1. The quantities d f )  and d!# are the elements of the second-order 
derivation matrix defined in (19) and given in the Appendix. Note that the values of p at the 
corners of the domain D do not appear in (33). 

of 
(32) must be the zero polynomial, which is equivalent to the condition 

Now, if we suppose that the solution GN, ,,, of(29) satisfies (30), then clearly the solution a;, 

X k , I = O ,  1 I k S N -  1, 1 _<1<M- 1. (34) 
Finally equations (34) are found to be satisfied if and only if 

Therefore equations (35) give necessary and sufficient conditions which must be satisfied by the 
boundary values p i ,  k, i = 1,3, 1 I k I N - 1, and p i ,  I ,  i = 2,4, 1 I 1  I M - 1, to ensure that peGN, M .  

The algebraic system (35) consists of 2(N + M - 4) equations for 2(N + M - 2) unknowns; therefore 
its rank is 2(N + M - 4) at most. By writing down the matrix of system (35) it is easily seen that an 
invertible minor of order 2(N+M-4) can be extracted by eliminating the four columns 
corresponding to pi, 1 ,  pl ,  N- p 3 ,  and p 3 ,  N -  i.e. corresponding respectively to the collocation 
points 

Al=(xi ,  I), A ~ = ( x N - ~ ,  11, A3=(x1, -I), A 4 = ( X N - 1 , -  1). (364 

It follows that the system (35) defines p i ,  k, i = 1,3,2 I k I N - 2, and p i ,  ,, i = 2,4,1 I 1  I M - 1, in 
terms of pl. 1 ,  pl, N -  1,  p3, and p3, N- in a unique way. It is likely that other choices of points 
leading to an invertible subsystem of (35) are possible, for example points more regularly 
distributed on the boundary. However, the way considered here seems to be the simplest to prove. 

Thus the fact that the system (35) is of maximal rank and the above remark concerning the 
values of p at the corners allow us to conclude that the dimension of G N , M  is eight. Then, by 
considering the points A i ,  i =  1, . . . , 4, defined by (36a) and also the corners 

A , = ( l ,  l), A,=( -1 ,  I), A,=& -i), A,=(-1, -l), (36b) 

we define a complementary space H N ,  of GN, by 

HN, M =  {PEEN, M/p(L(Ai )  = O ,  1 I i 5 8 ) .  

being 2 ( N +  M-4). 
It follows that we have to look for a boundary condition p belonging to H N ,  
problem Po, the dimension of H N ,  

in order to solve 

Let us now consider the boundary condition (28); when it is satisfied we have 

where h, is such that hpI = rpl ,.i, 1 I i I 4, are the polynomials interpolating klri on the collocation 
points of Ti. For this to be true the ipi have to satisfy both conditions (15) where gi=O and 
conditions (16). These conditions will be satisfied up to the accuracy of the Chebyshev polynomial 
approximation to the boundary conditions g and h of(21). Therefore the conditions (15) imply that 

- 
bpi( _+ 1) = 0, 1 I i < 4, 

and by the further conditions (16) it can be seen that &. is entirely determined by its values at the 
points of rk=Tc-{Al ,  . . . , A s ) ,  where Ai, 1 s i18 ,  are the points defined in (36). Thus kp 
belongs to a vector space of dimension 2(N+M-4). 



434 U. EHRENSTEIN AND R. PEYRET 

If we suppose now that the only solutions of problem Po with 

a$N,Mlan=o on r 

are such that PEG,, M ,  then according to the above considerations the problem Po admits a unique 
solution ,ULE H N ,  M .  Furthermore, by the definition of the vector space GN, we see that the 
solution of problem Po is unique for g N ,  in D, are determined in a 
unique manner. 

The method of solution of problem Po is based upon the technique of superposition of 
elementary solutions. More precisely, if q j ,  1 sjr J = 2 ( N +  M-4), represent the points of r:, we 
define the characteristic function p j €  E N ,  by p j ( q j )  = 1 and pj=O on all other points of rc. Then 
we define the family (wj ,  $ j ) ,  1 < j < J ,  where mi, qj€PN, M ,  as the solutions of 

but only the values of GI,,,, 

Awj-owj=O in D,, 
w j = p j  on r,, 

- w j  in D,, 
$ j = O  on r,, 

and the solution p, G N .  M ,  qN, of problem Po is constructed as 
(39) 

The coefficients , I j ,  1 rj<J, are determined so that the Neumann boundary condition (37) is 
satisfied on points q j  of r:. By doing that we get the algebraic system 

M A = H ,  

where A=(,I , ,  . . . , I,,)=, H=(hp(ql), . . . , hp(qJ))T and the influence matrix M=[mi, j ] ,  

1 I i, j I  J ,  is defined by 

When A is known the solution wN,  M ,  $,,,, is determined by (22) and (41). As already pointed 
out, the method gives w N ,  on Tc given by the 
algorithm would be correct if the exact solution w was zero at points Ai, 1 s i I 8. It is obvious that 
this is not true in general and the values of wN, on r, (if needed) can be defined by the equation 
w", = - A $ N ,  written on r,. 

In the tau collocation influence matrix technique introduced in Reference 20 the difficulty 
associated with the non-uniqueness of p was surmounted by approximating w and $ with 
polynomials belonging to PN, and PN+ 2 ,  M +  respectively. 

in a unique way in D, only. The values of w N ,  

4. ALGORITHM FOR THE NAVIER-STOKES EQUATIONS 

As explained in Section 2, the solution of the unsteady Navier-Stokes equations is reduced to the 
solution of a Stokes-type problem at each time step. This problem is solved by the influence matrix 
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technique described in the previous section. The matrix of influence M being time-independent, it 
can be constructed and inverted once and for all before starting the time integration. Then at each 
time step we solve the problem ? which defines (GN, M ,  GN, M ) ,  we construct H and A is determined 
by 

A =M-  H. 

At this point several ways of calculating (oN, M ,  t,hN, M )  are possible according to the computer 

1. The solution (oN, M ,  $N, M )  is calculated from (22) with (ON, M ,  qN, M )  obtained through the 

2. The summation can be reduced by calculating i$N, by the equation 

GN, M =  - A $ N ,  M '  

facilities available (memory, vectorization or parallelization). For example: 

summation (41). 
from (41) and GN, 

3. The summation can be avoided completely by calculating (wN,  M ,  $N, M )  as the solution of 
the two Dirichlet problems 

A c o N ~ M - G w N , M = F  in D,, 
M ( V j )  = i j ?  Vj€C, IljSJ, 

W N , M = O  on rc-rc 
and 

A * N , M = - ~ N , M  in D,, 
* N , M = O  on Tc. 

This third technique is used in the calculations reported below. 
Therefore the solution of the Navier-Stokes equations is reduced to: (1) the evaluation of the 

right-hand side F of equation (23); (2) the solution of Helmholtz-type equations with Dirichlet 
boundary conditions. The global efficiency of the method depends strongly on the manner in 
which these two operations are performed. 

The evaluation of the non-linear convective term V-Vo in F can be done either by the usual 
pseudospectral technique (products in the physical space, differentiations in the spectral space, 
link of both spaces by a FFT algorithm) or by matrix products in the physical plane using (19) for 
derivatives. This second technique has been employed here using an efficient vectorized 
subroutine for matrix products (MXM of SCILIB). For a moderate number of Chebyshev 
polynomials this technique is competitive with the pseudospectral technique. 

The Helmholtz equations are solved by means of a fast direct solver which is very efficient when 
a large number of problems have to be solved like here. This solver is described in the following 
section. 

5. A DIRECT HELMHOLTZ SOLVER 

The Helmholtz solver is an adaptation to the case of the collocation Chebyshev approximation of 
the matrix diagonalization procedure introduced in Reference 23 for the tau Chebyshev 
approximation. To illustrate the technique we consider the Dirichlet problem 

Au-ou=f in D, (42) 

u=g  o n r ,  (43) 
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where cr = const 2 0,fand g are given. Let uN,  be the polynomial approximation to the solution of 
(42), (43) and ( x k ,  yl), 0 5 k I N ,  0 5 1 I M ,  be the Chebyshev collocation points. The derivatives in 
(42) are expressed in terms of uN, M ( x k ,  y l )  by formulae of the type (19). Then the boundary values 
uN,  M ( x k ,  k 1), 1 I k I N - 1, and uN, M( k 1 ,  y l ) ,  01 15 M ,  are eliminated thanks to the boundary 
condition (43). Hence the matrix UN, = [ t iN,  M ( & ,  y l ) ] ,  1 I k I N - 1, 1 I I <  M - 1, is the solution 
of 

D L 2 ’ U N , M + ~ N , M ~ y ) T - ~ ~ N ,  M = ~ ,  (44) 

where Di2) and Dy) are the matrices 

Di2’= [ d c ) ( k ,  l ) ] ,  1 k,  15 N - 1, 

Dy’=[d!&’(k, l ) ] ,  1 I k ,  I S M - 1 ,  
with d(N2) and d!$ the coefficients appearing in equation (19) and given in the Appendix. Finally 9 
is the matrix 

9 = [ F ( x ~ ,  yl)], 1 I k < N  - 1, 1 I 1 < M -  1 ,  

with 

F ( x k  9 YL = . f ( x k  9 Yl f - d%) (I, O) 91 ( x k )  - d!&)(13 ) 9 3  ( x k  ) - d!$) (k,  O) g2 (Yl) - d!$) (k ,  
4 

) g4(Yl), 
where we have introduced, as in Section 3, gi = g I r i  and = u = Ti (see Figure 1). As proven in 
Reference 24, the eigenvalues of each of the matrices DL2) and D f )  are real, distinct and negative. 
These matrices can be diagonalized; therefore 

S; D:%, = diag ( A x ,  1, . . . , A,, - ) = A,, 

where Ax,  
eigenvectors. By multiplying (44) on the left by S;’ we obtain 

. . . , A,, N -  are the eigenvalues of D‘,‘) and S, is the matrix of the associated 

A~ ON, M + O N ,  M D?)’ - aON, M = @, (45) 
where 

A 

uN, M Z S ;  ‘ O N ,  M = C d E , l I ,  @= s; p = [ E k ,  11. 
Therefore the solution of the system (44) reduces to the solution of N -  1 ‘one-dimensional’ 
systems: 

[D$”+ (Ax, k - 0) I] f r k  = @k, 1 < k < N - 1, (46) 
where 

f j k = ( d k , l ? .  . . 9 d k , M - l ) T ,  @ k = ( F k , l , .  . . 9 E k , M - l ) T .  

The solution of (46) can be obtained by direct inversion without or with preconditioning to 

Following Reference 25, we may also perform a second diagonalization in the y-direction. In 
prevent numerical inaccuracies due to the ill conditioning of the matrix DL2)+ ( A x , k  - o)I. 

this case DY) is diagonalized as 

S;1D$2)Sy=diag(Ay,l, . . . , Ay,M-l )=Ay 

and equation (45) becomes, after multiplication on the right by (Sy-l)T, 
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where we have taken into account S;D:2)T(Sy-1)T=Ay. Equation (47) can be rewritten as 
I 

( ~ x , k $ I Z y , I - o ) i i k , l = F k , l ,  1 I k S N - 1 ,  1 SIShf-1, (48) 
where i i k ,  I and F k ,  are the entries of matrices €I,, ,(s; llT and @(s; 1 ) ~  respectively. Equations 
(48) give the solution i i k , l  from which the solution uN,,(xk, yr )  can be obtained. 

Numerical results from the various techniques described above will be presented in Section 6. 
It must be remembered that algorithms of diagonalization are efficient when a large number of 

Helmholtz problems (42), (43) have to be solved in the course of an unsteady calculation. In this 
case the calculation of eigenvalues, eigenvectors and the inversion of the matrices can be done once 
and for all before starting the time integration. 

Finally we point out that the method can be applied to any type of boundary conditions," the 
technique being to eliminate the boundary values thanks to the boundary conditions, as done in 
the Dirichlet case. 

6. NUMERICAL RESULTS FOR POISSON AND STOKES EQUATIONS 

The algorithms described in the previous sections have been applied to test cases in order to 
evaluate their properties. 

6.1. Poisson equation 

We consider the Poisson equation with Dirichlet conditions 

Au=f  in D :  - 1 <x, y <  1, (494 

u=O onT=dD,  (49b) 

uex = sin(4nx) sin(4ny) (50) 

with the exact solution 

which defines the forcing term f in (49a). The solution of problem (49) is obtained by the 
collocation Chebyshev method using the matrix diagonalization procedure described in Section 5. 
Table I shows the maximum error on collocation points given by the various techniques of 
Section 5. The degree of the polynomials is the same in both directions, that is N = M .  The 
calculations were done with a CRAY 1s computer (providing 14 accurate digits). 

(i) E ,  is the error obtained when the matrices Lk=D~)+(L, , , -o)I ,  1 l k l N -  1, in (46) are 
inverted by using the subroutines SGECO/SGEDI of SCILIB. The important loss of 
accuracy between N = 32 and N = 64 is mainly due to the ill conditioning of the matrices Lk. 

Table I. Errors for the Poisson equation 

~ 

12 8.83 E-2 8.83 E-2 
16 525 E-3 5.25 E-3 
20 7.52 E-5 7.52 E-5 
24 4.05 E-7 4.05 E-7 
32 7.65 E-12 2.84 E-12 
40 1.38 E-11 1.23 E-12 
48 1.54 E-11 2.31 E-12 
64 207 E-11 3.68 E-12 

8.83 E-2 
5.25 E-3 
7.52 E-5 
4.05 E-7 
2.86 E-12 
1.26 E-12 
2.21 E-12 
3.78 E-12 

8.83 E-2 
5.25 E-3 
7.52 E-5 
4.05 E-7 
2.87 E-12 
1.47 E-12 
3.63 E-12 
3.90 E-12 

2.70 E-1 
3.33 E-2 
8.19 E-4 
6.89 E-6 
4.95 E-11 
6.06 E- 12 
8.79 E-12 
2.93 E-11 
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(ii) E ,  is the error obtained by preconditioning L, before inversion. Let A, be the 
matrix associated with the three-point centred finite difference approximation 
of a2/dy2 + ( A x ,  , - 0) 1 using the Chebyshev points. This tridiagonal matrix A, serves 
as a preconditioning matrix for L,, so that the matrices to be inverted are now 
B, = A; L,, 1 I k I N  - 1, which are well conditioned.26 The inversion is performed 
again with SGECO/SGEDI. The gain in accuracy for high values of N is clearly seen. 

(iii) However, equivalent results (error E 3 )  are obtained without preconditioning but by 
inverting L, with a more elaborate inversion subroutine (LINV2F of IMSL). 

(iv) The error E ,  given by the full diagonalization technique (equation (48)) is comparable to 
errors E ,  and E , .  

(v) The error E ,  concerns the case of the tau Chebyshev approximation of (49) associated with 
the partial diagonalization algorithm'2~2s inspired by Reference 23. The solution of the 
resulting one-dimensional problems reduces to the inversion of quasi-tridiagonal matrices 
(for odd and even modes). 

We may observe that the collocation method is slightly more accurate than the tau method 
provided the problem of ill conditioning of collocation matrices is correctly handled. The loss of 
accuracy observed when N is large can be attributed to round-off errors associated with the 
various numerical processes: calculation of eigenvalues and eigenvectors, inversion of matrices, 
etc. In this respect it must be pointed out that the conditioning of the eigenvector matrix S, (or S,) 
is comparable and even better in the collocation method. For 24 I N I 64 we found the condition 
number 

K ( S , )  = ,/(Lmax/jlmin) N 0.80 No"', 

where A,,, and lZmin are respectively the largest and smallest eigenvalues of S,S;. For N =  32 this 
gives K N 1.90 which must be compared with K N 4.24 obtained in the tau method of Reference 23. 

6.2. Stokes equations 

solve the Stokes problem 
The collocation Chebyshev influence matrix technique described in Section 4 has been used to 

in D: - 1 < x , y < l ,  
A o = f  
A $ + o = O  

with the exact solution 

$,, = sin(4nx) sin(4ny), a,, = 32n2$,, (53) 
which defines f and h. The Poisson equations occurring in the influence matrix method 
are solved by the algorithm described in (ii) of Section 6.1 (partial matrix diagonalization, 
inversion after finite difference preconditioning). The results are reported in Table 11: E$ with 
4 = {$, co] is the maximum error on all collocation points normalized with the maximum norm 
II6IIm; E Z ,  is the analogous error on inner collocation points; E t  is the discrete L, error 
normalized by the L, norm of 4; I?$ is the maximum error, normalized with I1411m, of the 
Chebyshev coefficients & (equation(l8)) with respect to the coefficients of the exact solution. Both 
these spectra being calculated by means of a FFT algorithm using the same number of collocation 
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Table 11. Errors for the Stokes equations 

N = M  EC E% Eo, Eo,, EY 2: Eo, 
16 1'32E-2 1'40E-2 2.63E-1 2'96E-2 2.88E-1 3'92E-3 8'20E-2 
24 3.75E-6 3.10E-6 1.69E-4 7.35E-6 1'67E-4 9.478-7 4.69E-5 
32 3.55E-11 2'81E-11 2'85E-9 7'16E-11 2.72E-9 8.57E-12 7.26E-10 
40 2.95E-12 1.19E-12 3.368-11 3.61E-12 1'65E-11 3.14E-13 5-WE-12 
48 3.45E-12 1.77E-12 557E-11 4.24E-12 4'09E-11 5.20E-13 1.17E-11 
64 4'68E-12 2.55E-12 2.56E-10 1.58E-11 1.79E-11 7.99E-13 5'92E-11 

points, the quantity I?: measures the accuracy of the numerical algorithm but not the accuracy of 
the polynomial approximation. 

The comparison of E Z  and EZI in Table I1 shows that the error is maximum on the boundary 
itself. We recall that the influence matrix method gives the values of w at inner collocation points 
only. Here the boundary values of w have been determined by using w = -A$ on the boundary. 

We have also compared the results given by the present collocation method with those obtained 
through the tau collocation influence matrix technique proposed in Reference 20. The results are 
comparable, with again some advantage to the pure collocation approximation. It was observed 
that the influence matrix is better conditioned in the present method. For the Stokes-type problem 
(12), (13), we numerically found the condition number 

K ( M ) ~ . U ( ~ ) N ' ' ~ ~  

with a(0)=0.46 and a(1000)=0~03. 

of the secondary eddies appearing in the Stokes flow in a corner. 
The high accuracy of the method was also made evident in Reference 22 through the calculation 

7. STABILITY O F  THE INFLUENCE MATRIX TECHNIQUE 

When the influence matrix technique is employed for solving the Stokes-type problem at each time 
cycle of the unsteady solution of the Navier-Stokes equation an important question concerns the 
stability of the time discretization scheme. Results on the stability of the schemes of type (8) applied 
to the solution of the one-dimensional advection-diffusion equation have been presented in 
Reference 6.  However, these results cannot be applied directly to the present problem because of 
the presence of the $-equation and mainly because of the boundary conditions and the manner of 
their implementation through the influence matrix method. 

In this section some theoretical results on the stability of the method are given in the special case 
where (1) convective terms in (1) are neglected (the unsteady Stokes approximation) and (2)  the 
solution is assumed to be 2n-periodic in the y-direction. Then, by expanding the solution w(x, y, t),  
$(x, y, t )  in Fourier series in the y-direction, we obtain for each Fourier component w,(x, t),  
$,(x, t )  corresponding to the frequency K the following problem: 

where we have assumed f= g = h = 0. This assumption is not restrictive for a stability analysis. 



440 U. EHRENSTEIN AND R. PEYRET 

The above system is discretized with respect to time according to the scheme (8), so that ' (x), 
$:+I (x) is the solution of a one-dimensional Stokes-type problem analogous to (lo), (11). This 
problem is solved by using the collocation Chebyshev influence matrix method developed in 
Section 3. We denote by (w;+', $;* I )  the polynomial approximation to the solution (m i++ ' ,  
$:+ ). The method involves the following decomposition: 

The pair (&;+I, 6;") is the solution of problem P analogous to (23), (24). The pairs (ajN, $ j N ) ,  

j =  1,2, are analogous to (aj, defined in (38), (39) with wlN(-  I ) =  I ,  w,,(l)=O, w Z N ( -  1)=0, 
wZN(  1)  = 1. Finally the coefficients A;+ ' , j = 1,2, are determined so that the second boundary 
condition (55) is satisfied. The values @(xJ, x k  = cos(kn/N), 0 I k I N ,  can be expressed in terms 
of the values 15y(xk)  and it is the same for the coefficients 27, j =  1,2. Therefore the study of the 
stability of the scheme can be reduced to the study of 

& + I  = A @ +   an- 1, (58)  

where am = [6$(xl), . . . , 6 ; ( x N -  l)]T, A and B are two matrices which depend on vAt, N ,  
on the parameters of the scheme E,  8, and 8,. 

and 

By introducing @"=&'-I, equation (58) becomes 

where 

E=(: :). 
A necessary condition for stability is that p(E)< 1 where p(E) is the spectral radius of E. For 

some special schemes of the family (8) the following results are proven in Reference 21. For the 
schemes 0 < 8, I 1, tI2 = 1 - 8, and either E = 1 or E = 28, the matrix E has at  least one eigenvalue 
whose absolute value is (1 - 8,)/8,. Also, for the schemes 0 < O1 5 1, 6 ,  = 0 and E = 2 (28, - l), E has 
eigenvalues equal to +i,/[(l -81)/81-J. Hence the condition p(E)I 1 necessitates 8,2 1/2. In fact 
for all these special schemes it can be proven that 

(i) p(E)> 1 if 0<Ol <1/2, 
(ii) p(E)= 1 if 9,= 1/2, 
(iii) p(E)< 1 if 1/2<8,51.  

The result (i) is remarkable: it shows that schemes for which 8,<1/2 are unconditionally 
unstable, while the same schemes applied to the diffusion equation alone are conditionally stable.6 
The result (ii) shows that the stability of the usual Crank-Nicolson scheme (E  = 1, O1 = O2 = 1/2) can 
be defined as marginal. Finally schemes belonging to case (iii) seem to have the best property of 
stability. In particular the second-order Euler backward scheme(& =2,8,  = 1,9, =0) has been used 
with successzo~27 in the solution of the Navier-Stokes equations. Its application to the calculation 
of a time-periodic flow (Section 9) showing no damping of the oscillations is a guarantee that this 
scheme is not too dissipative, even if it damps the higher Chebyshev modes more than the 
Crank-Nicolson scheme does. 

We emphasize the fact that the matrix E does not possess the properties permitting us to 
conclude that p ( E ) I l  is sufficient for ~tabi l i ty . '~ . '~  So E is not normal and when it is 
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diagonalizable (Crank-Nicolson scheme, for example) the dependence on At of the matrix of 
eigenvectors of E prevents us obtaining a criterion of algebraic stability29 which would ensure the 
convergence of the scheme. However, numerical experiments conducted in Reference 21 in the 
case of the tau Chebyshev approximation (for which the same conclusions (iHiii) hold too) have 
shown that the Crank--Nicolson scheme as well as the second-order backward Euler scheme (for 
which E is not diagonalizable) are actually unconditionally stable. 

8. NUMERICAL RESULTS FOR THE NAVIER-STOKES EQUATIONS 

First the spatial accuracy of the method for solving the Navier-Stokes equations has been tested 
on the exact solution 

(61) 4:;) = ( 1 - x2)2( 1 __ y 2 ) 2  eX(Y- I), ol;) = - A$ L i ) .  
which definesfin (1) and g = h = 0 in (5 ) .  The steady solution is computed by means of the AB/2BE 
scheme (c=2,8, = 1, U,=O in (8)) with V=O, o=O as initial conditions and v =  1. Table 111 gives 
the following errors: El = E:, E, = EY with E: and EY defined in Section 6.2, E ,  = EY obtained in 
Reference 20 with a tau collocation method. The comparison between E ,  and E, again shows the 
better accuracy of the present collocation method. 

Then the accuracy in time has been checked on the unsteady solution 

with $1.;' givcn in (61). This definesJin ( l ) ,  g = h = O  in ( 5 )  and the initial condition (6), (7). The 
calculations have been done with v =  1 and we have compared the error in time corresponding to 
various schemes of second-order accuracy: 

A. & = I ,  8,  = 1/2, O2 = 112 (AB/CN scheme), 
B. &=2,  el = I ,  o,=o (AB/2BE scheme), 
c. E = l ,  e,=3/4, o,=o, 
D. & = 3 p ,  0,=3/4, e2=i/4. 

The degree of the polynomials is the same in both directions: N = M = 20. This number is 
sufficient to represent correctly the spatial part of the solution (see Table III), so that the error 
which appears is actually the error in time. Figure 2 displays the error 

where o(,i)'' and m i v M  are the values of the exact solution and of the numerical solution 
respectively at t = nAt; )I - ) I 2  is the discrete L, norm on the collocation points. The presence of three 
levels in time in the scheme necessitates a starting-up procedure with a modified scheme, which in 
the present case (Section 2) is first-order only. Hence the maximum in (63) is taken when the effect 

Table 111. Errors for the Navier-Stokes equations 

10 2.21E-4 441E - 5 1.37E-4 
12 3'57E-6 538E - 7 2.01 E - 6 
16 232E - 10 3 W E  - 1 1  1'29E- 10 
20 3.59E- 12 7.14E - 13 2'22E- 12 
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Figure 2. Error E is a function of At for various schemes 

of the initialization has disappeared, that is when the periodicity of E is accurately established. It is 
seen in Figure 2 that the AB/2BE scheme is slightly more accurate than the AB/CN scheme, at 
least for the special solution considered here. The same conclusion was found in Reference 20. 

Finally we have computed the steady flow in a square cavity 0 < X ,  Y <  a. The velocity is zero on 
three sides and is u = - 16 u , X 2  (az - X2) /a4 ,  u = 0 on the side Y = a. The Navier-Stokes equations 
are made dimensionless by using a, u, and a/u, as reference length, velocity and time respectively; 
Re is the corresponding Reynolds number. Then the change of variables x = 2 X  - 1, y = 2 Y -  1 is 
done in order to express the Navier-Stokes equaticns in the domain D: - 1 < x, y < 1. The resulting 
equations were solved with the AB/2BE scheme by using homogeneous initial conditions. The 
degree of the polynomials is the same in both directions ( N  7 M).  Table IV shows the maximum 
time step At allowable for stability. We may observe the good stability properties of the scheme: 
for instance, for Re=400 the critical At varies approximately as 1,”. 

The steady solution is assumed to be reached when the normalized maximum residual on the 
vorticity is Table V gives some characteristic results: M I  is the maximum value of t,b on 
collocation points, M2 is the maximum value of o on the upper side y =  1 calculated on collocation 
points and M3 is the analogous maximum but calculated on 201 equispaced points. The co- 
ordinates of the points where the maxima are reached are given in parenthesis. The quantity M ,  
provides a significant measure of the degree of convergence of the spatial approximation. So, for 
Re = 100, N = 32 is sufficient to represent correctly the solution within a relative change of 10- 5 .  

On the other hand, in the case Re = 400, N = 32 is not sufficient to get an optimal representation of 
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Table IV. Critical time step At  (with an error 
10-3) 

N = M  Re= 100 Re = 400 

16 0.194 0.067 
24 0.100 0.047 
32 0.072 0.033 

Table V. Results for the cavity flow 

Re= 100 Re = 400 

N = M  MI M 2  M 3  M ,  M 2  M 3  

16 8'5159E - 2 
(0.40-0.78) 

(0.424.73) 
8.33 1 5E - 2 
(0.374.75) 

(0.40-0.74) 

20 8'2695E - 2 

24 

32 8.3402E - 2 

13.3687 
(0.60) 

13.1780 
(0.66) 

13.4227 
(0.63) 

13.3422 
(0.60) 

13.4663 
(0.62) 

13.4459 
(062) 

134446 
(0.62) 

134447 
(0.62) 

8.5378E - 2 
(0.40-0.60) 
8.521 3E - 2 
(0434.58) 

(0434.63) 

(0.40-0.60) 

8.5716E-2 

8.5480E - 2 

25.2329 
(0.60) 

24.6693 
(0.65) 

24.9344 
(0.63) 

24.7845 
(0.65) 

~~~ 

25.4675 
(0.62) 

24.9846 
(0.63) 

24.9333 
(0.63) 

24.9 1 10 
(0.63) 

the solution. Figure 3 compares the values of M 3  given by various spectral methods and we refer to 
Reference 15 for analogous results obtained with finite difference methods. 

Th CPU time on the CRAY 1s is 3.36 x lop3 s/time step for N = M = 16 and 1.32 x lo-' s/time 
step for N = M = 32. 

9. DOUBLE-DIFFUSIVE CONVECTION 

9.1. Formulation of the problem 

Double-diffusive convection deals with the motion of a fluid resulting from the combined effh of 
gravitational acceleration and the diffusion of two components with different molecular diffus- 
ivities. As usual, we designate by T, temperature, the component with the higher diffusivity I C ~  and 
by S ,  salinity, the other component with diffusivity I C ~ .  

In this section we are interested in the application of the collocation Chebyshev method to the 
calculation of the motion occurring when a fluid is salted and heated from below. This problem 
has already been studied numerically in References 30-35 by various methods, but none of these 
was able to give results for the case of small values of the ratio z = I C ~ / I C ~  corresponding to actual 
values of salt and heat in water (T 10- 2, because of the numerical difficulties associated with the 
complex structure of the salinity fields. Moreover, when z is small the large disparity between the 
two time characteristic scales (thermal and solutal times) makes this a problem of the stiff type. 
The numerical results given below in the case where z=0-0125 will show the ability of the 
Chebyshev method to compute such flow fields. 
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Figure 3. Maximum value of the vorticity M ,  = max w(x, y) on the moving boundary y = 1 

In References 30,31 and 33-35 the flow takes place in an infinite horizontal strip, the periodicity 
is assumed in the horizontal direction and the horizontal boundaries are assumed to be stress-free. 
Finite difference methods are used in References 31, 33-35 and a Fourier series method is 
considered in Reference 30. The case of a finite domain with no-slip boundary conditions was 
computed in Reference 32 using a first-order finite difference method. 

Here we consider the case of a finite rectangular domain D :  0 < x < A,  0 < y < 1, the height H of 
the domain being taken as the characteristic length. In dimensionless variables the temperature T 
and salinity S are equal to one at the bottom, y =0, and are zero at the top, y =  1. The vertical walls 
x = 0 and x = A are such that aT/ax = aS/ax = 0. Finally, no-slip boundary conditions are 
considered for the velocity. 

We are interested in the stability of the conductive solution V, = (u,, u,,) = (0, 0), To = 1 - y, 
So = 1 - y ;  hence, by introducing the perturbation variables 

O =  T-(1 -y), a = S - ( 1  -y) (64) 

aolat + v-vo - - A e  = o, (65) 

(66) 

awlat + v - v o - P r A o =  Pr(R,aelax- ~ , a a l a ~ ) ,  (67) 

A $ + o = O ,  (68) 

and assuming the Boussinesq approximation to be valid, the equations of motion are written 

au/at +v-vu - v -  z ~ o  = 0, 
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where Pr is the Prandtl number, RT and R, are the thermal and saline Rayleigh numbers 
respectively. The time has been normalized by using the thermal time H'/Ic, as reference. The 
above equations are solved in the domain D with no-slip conditions I) = aI)/an = 0 on the whole 
boundary and homogeneous boundary conditions for 0 and o, i.e. 6 = o = 0 on y = 0 and y = 1, and 
a6jax=ao/ax=o on X = O  and X = A .  

At initial time the conductive solution is perturbed by considering the initial condition 

6 = 0"(x, y) = cos(nx/A) sin(ny), o=o, u=v=o, w=O. 

The time discretization scheme makes use of the Adams-Bashforth second-order backward 
Euler scheme. Thus, at each time cycle, 0"' and o"+l are first calculated independently as the 
solution of Helmholtz equations obtained from (65) and (66) respectively. Then the resulting 
values are brought into the right-hand side of(67) and (on+ ', @"")is the solution of a Stokes-type 
problem. All these equations are solved by the collocation Chebyshev method described in the 
previous sections. 

9.2. Numerical results 

As found in References 3CL35, different flow regimes exist according to the values of the physical 
parameters: steady or oscillatory (periodic or not) solutions with a possible hysteresis effect. Hence 
it is not our purpose here to make a detailed analysis of the problem, which would necessitate not 
only many more numerical experiments than we did but also a precise theoretical study. We only 
want to illustrate the ability of the method to solve a problem in a situation (small values of the 
diffusivity ratio) which has not yet been studied with any other numerical method. 

In a first set of experiments we have considered the case already computed in Reference 32 with 
A = 1, Pr = 1 ,  t = 0.1, R ,  = 2000 and various values of R,. Our numerical results obtained with the 
initial condition (69) show the same behaviour as found in Reference 32: for small values of RT the 
perturbation is damped out and the state is ultimately motionless; for large values of R ,  we obtain 
a steady convective flow; between these values there exists a range of RT for which the solution is 
periodic in time. TableVI give some results: JI,,, is the value of the streamfunction at the 
collocation point where its absolute value is maximum; N ,  and N ,  are respectively the thermal 
and saline Nusselt numbers averaged along the lower horizontal wall. In Table VI the columns (a) 
refer to our present results and (b) to the finite difference solution obtained in Reference 32. We 
observe some difference in the critical values of the thermal Rayleigh number RT as well as in the 
values of I),,,, N T  and N , .  The error associated with the first-order finite difference approxima- 
tion used in Reference 32 has the effect of increasing the critical value of RT. Moreover, the 
difference in the sign of $,,,axmeans that the direction of rotation of the fluid is opposite. In fact, it is 

Table VI. Results for A = l ,  P r = l ,  z=O.1 and R,=2000 (a)present results; 
(b) results of Reference 32 

4800 0 0 1 1 1 1 
4900 osc. 0 osc. 1 osc. 1 
5000 - 2.756 0 1.40 1 1 3.272 1 
5200 -3.129 osc. 1.483 OSC. 3.439 osc. 
5450 - 3.463 2.28 1.554 1.36 3.579 3.55 
6000 -4.031 3.20 1.670 1.57 3.797 4-14 
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easy to verify on the steady equations of motion that steady convective solutions with both direct 
and indirect rotation are simultaneously possible. 

For the periodic solution obtained for R,=4900 the period is found to be 0.545, with 
- 1.681 1.681, 1.002s N,I 1.157 and 1.2565 N , I  1.625. All the above calculations have 
been done with N = M = 20 and At  = w3. 

In Reference 32 the authors reported that they always obtained the same final solution whatever 
the chosen initial condition. We have not studied the influence of the initial condition for z=O.l;  
on the other hand we did in the case ~=0.0125 (not studied in Reference 32) and we find an 
important sensitivity of the solution to the initial condition Bo(x, y). For example, with Bo given by 
(69) we obtain a periodic solution for R, = 4000 (see Table VII), while by using the initial condition 

Bo(x, y)=cos n(x+n/lO)sin n(y+n/10) (70) 

we do not obtain such a periodic solution. More precisely, for R,I4321 the ultimate solution is 
the rest and for R,24322 it is a steady convective state. Note that for these limiting values of RT 
the equations have been integrated up to t=250 (i.e. 3.125 characteristic solutal times). More 
calculations would be needed to determine the conditions of existence of oscillatory convection. 
Also a careful theoretical study would be necessary to clarify the question of the influence of initial 
conditions. At the moment we only want to point out that the initial condition (69) possesses the 
symmetry property q5(x, y)= - q5(A - x, 1 - y) (where q5 represents 0, c, u or u), while the condition 
(70) does not. The above symmetry property induces an identical one for the solution at 
subsequent times and may have an influence on the behaviour of the ~ o l u t i o n . ~ ~ , ~ ~  One might 
think that such a periodic symmetrical solution is unstable to unsymmetrical perturbations; 
however, calculations have shown that the disturbances in the periodic regime created by a small 
random perturbation of the thermal field are damped out and the solution again becomes 
periodic. 

The results presented in Table VII were obtained with the initial condition (69) and A =  1, 
P r = l ,  ~=0.0125, R,=2000 and N=M=40,  A t - 5 x  Figure4 shows an example of the 
steady convective solution. In the case of the periodic solution (R, = 4000) the period was found 
equal to 1.033 and - 1-793 I$max I 1.793, 1.002 I N T I  1-194, 22501N~12.999. The graph of 
these quantities as a function of time is given in Figure 5. Figure 6, which shows the fields at 
various times (not equally spaced) during a period, illustrates the unsteady behaviour of the flow. 
The calculations have been pursued up to t = 100 in this latter case and up to t = 250 for R T  = 3950 
and 4050. 

From Table VII we notice a change in the direction of the steady flow for R,=4400. This also 
occurs for neighbouring values of R,.  We recall that steady solutions with rotation in both 
directions are possible. 

Table VII. Results for A = l ,  P r = l ,  z=0.0125 and 
R, = 2000 

R T  $,ax N T  NS 

3950 0 1 1 
4000 osc. osc. osc. 
4050 - 2.502 1.359 6.303 
4400 3.007 1472 6.795 
4600 - 3.238 1.523 7.002 
5000 - 3.64 1 1 -608 7.338 
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Figure 4. Contours of (1) temperature, (2) salinity, (3) streamfunction, (4) vorticity for Pr=  1, t=0.0125, R,= 2000, 
R,= 5000 (steady solution) 
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Figure 5. Evolution in time of (a), (b) maximum streamfunction, (c) thermal Nusselt number, (d) saline Nusselt number 
for Pr= 1, t=0.0125, R,=2000, RT=4000 (periodic solution) 

Some calculations have also been done with a realistic value of the Prandtl number for salted 
water, i.e. Pr = 7. We present here some results obtained with the initial condition (69) and A = 2, 
z = 0.01 25, R ,  = lo4 and two values of R, .  These calculations were carried out with N = 60, M =40 
and At = 5 x For R ,  = 2 x lo4 the ultimate solution is the steady convective flow illustrated 
in Figure 7. In this case it is clear that the salinity is nearly constant (equal to 1/2) everywhere 
except in the neighbourhood of the walls, in particular near the horizontal walls where it exhibits a 
boundary layer behaviour. Finally, Figure 8 presents some typical fields at different times 
for R,= 1.2 x lo4. These fields show how complex the salinity structure can become when the 
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Figure 6. Instantaneous contours of ( 1 )  temperature, (2) salinity, (3) streamfunction, (4) vorticity for Pr=  1, r=0.0125, 
R ,  = 2000, R ,  = 4000 at times (a) 13.52, (b) 13.64, (c) 13.68, (d) 13.72, (e) 13.84, (f) 14.04 (periodic solution) 

diffusivity ratio is small. This case has not been computed for a time long enough to decide about 
the nature of the ultimate state. 

All these calculations show how careful one must be when using a direct simulation for studying 
multiple solutions. Very often a large integration time is needed to ensure that a periodic or steady 
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(3) (4) 
Figure 7. Contours of (1) temperature, (2) salinity, (3) streamfunction, (4) vorticity for Pr=7, T =0.0125, R,= lo4, 

R,  = 2 x lo4 (steady solution) 

state, up to the machine accuracy, is actually reached; also the level of accuracy of the calculations 
can have an effect on the behaviour of the solution. In these respects an analytical study based on 
the theory of stability and bifurcation is a valuable complement to a direct simulation. 

10. CONCLUSIONS 

A Chebyshev collocation method has been developed for solving the Navier-Stokes equations 
within the vorticity-streamfunction formulation. The efficiency of the method is mainly due to the 
influence matrix technique used to prescribe the boundary conditions correctly. Then the 
computational effort reduces to matrix products which can be performed efficiently on a vector 
computer. The evaluation of the non-linear terms can be done either by matrix products or by the 
pseudospectral technique using the fast Fourier transform algorithm. For the time discretization it 
has been shown that the finite difference Adams-Bashforth/second-order backward Euler scheme 
possesses good properties of stability and accuracy. The accuracy of the spatial Chebyshev 
polynomial approximation has been examined on test cases. Finally the capability of the method 
to solve a more realistic problem has been proven by computing a double-diffusive convective flow 
in a rather delicate situation because of the small value of the diffusivity ratio. 

The main advantage of the present collocation method over the tau collocation method 
proposed in Reference 20 lies in the fact that i(/ and o are approximated with polynomials of the 
same degree while in the tau collocation case i(/ is approximated with higher-degree polynomials 
than o. This produces two different sets of collocation points for i(/ and o and then necessitates a 
special numerical treatment for evaluating the normal derivative of i(/ at the boundary and for 
computing the non-linear terms by FFT. The present method is free of such difficulties. Moreover, 
the collocation influence matrix is better conditioned than the tau collocation one. Finally, as 
recognized in several circumstances, the collocation method also possesses other advantages over 
the tau method: better accuracy and stability, easier solution of variable coefficients equations. 
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Figure 8. Instantaneous contours of (1) salinity, (2) streamfunction for P r = 7 ,  ~=0.0125, R,= lo4, R,= 1.2 x lo4 at times 
(a) 0.6, (b) 08,  (c) 0.92, (d) 1.0, (e) 1.08, (f) 1.40 (unsteady solution) 
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APPENDIX: COEFFICIENTS O F  DERIVATIVE EXPANSIONS (EQUATION (19)) 

First-order derivative 

ck ( -  l )k+j  
d$)(k, j ) = _ - - -  , O l k , j l N ,  k f j ,  cj x k - x j  

l < k < N -  1, xk d$’(k,  k)= - 
2(1 - x i ) ’  

2 N Z  f 1 
d),?’(O, O)= - d # ) ( N ,  N ) = -  

6 ’  

where x,=cos(kn/N); Z0=CN=2,  C k = l ,  I s k < N - 1 .  

Second-order derivative 

d v ’ ( k ,  j ) =  , l < k l N - 1 ,  k # j ,  O < j < N ,  

( N 2  - 1 )  ( 1  - x i ) +  3 
3(1 -x:)’ 

d‘,’(k, k )=  - , l < k < N - 1 ,  

2 (  - 1)’ ( 2 N Z  + 1 ) ( 1  - x j ) - 6  
d(NZ’(0, j ) = - -  , l < j r N ,  

d‘,’(N, j ) = - -  , O S j s N - I ,  

3 cj ( 1  - X j ) 2  

3 Cj ( 1  + x j y  
2 (  - l ) j f N  ( 2 N Z  + 1)( 1 + x j ) -  6 

~ 4 -  1 
d~’(O,O)=d!+?’(N,  N ) = -  

15 ’ 

REFERENCES 

1. S. A. Orszag and L. C. Kells, ‘Transition to turbulence in plane Poiseuille and plane Couette flow’, J .  Fluid Mech., 96, 

2. P. Moin and J. Kim, ‘On the numerical solution of time-dependent viscous incompressible fluid flows involving solid 
boundaries’, J .  Comput. Phys., 35, 381-392 (1980). 

3. L. Kleiser and U. Schumann, ‘Treatment of incompressibility and boundary conditions in 3-D numerical spectral 
simulations of plane channel flows’, in E. H. Hirschel (ed.), Proc. Third G A M M  Con$ on Numerical Methods in Fluid 
Mechanics, Viewegi Braunschweig, 1980, pp. 165-173. 

4. Y. Morchoisne, ‘Resolution des equations de Navier-Stokes par une methode spectrale de sous-domaines’, 3eme Con$ 
Int. sur les Mkthodes Numkriques de l’lnghnieur G A M N I ,  Paris, 14-16 March 1983. 

5. J. Ouazzani and R. Peyret, ‘A pseudo-spectral solution of binary gas mixture flows’, in M. Pandolfi and R. Piva (eds), 
Proc. Fijth GAMM Conf. on Numerical Methods in Fluid Mechanics, Vieweg, Braunschweig, 1984, pp. 275-282. 

6. J. Ouazzani, R. Peyret and A. Zakaria, ‘Stability of collocation-Chebyshev schemes with application to the 
Navier-Stokes equations’, in D. Rues and W. Kordulla (eds), Proc. Sixth G A M M  Con$ on Numerical Methods in Fluid 
Mechanics, Vieweg, Braunschweig, 1986, pp. 287-294. 

7. P. Haldenwang ‘Resolution tridimens~onnelle des tquations de Navier-Stokes par methodes spectrala TchebycheR 
application a la convection naturelle’, ThPse Doctorat d‘Etat, Universitt de Provence, Marseille, 1984. 

159-205 (1980). 



452 U. EHRENSTEIN AND R. PEYRET 

8. P. Le Quere and T. Alziary de Roquefort, ‘Computation of natural convection in two-dimensional cavities with 
Chebyshev polynomials’, J .  Comput. Phys., 57, 21G228 (1985). 

9. M. R. Malik, T. A. Zang and M. Y. Hussaini, ‘A spectral collocation method for the Navier-Stokes equations’, J .  
Comput. Phys., 61, 64-88 (1985). 

10. F. Montigny-Rannou and Y. Morchoisne, ‘A spectral method with staggered grid for incompressible Navier-Stokes 
equations’, Int. j. numer. methodsjuids,  7, 175-189 (1987). 

1 I .  H. C. Ku, T. D. Taylor and R. S. Hirsh, ‘Pseudospectral methods for solution of the incompressible Navier-Stokes 
equations’, Comput. Fluids, 15, 195-214 (1987). 

12. B. Bondet de la Bernardie, ‘Contribution a la modelisation et a la simulation numerique du comportement dynamique 
et thermique des fluides visqueux par les methodes spectrales’, Thkse Doctorat 32me cycle, Mtcanique des Fluides, 
Universite Aix-Marseille 111, 1980. 

13. F. Elie, A. Chikhaoui, A. Randriamampianina, P. Bontoux and B. Roux, ‘Spectral approximation for Boussinesq 
double-diffusion’, in M. Pandolfi and R. Piva (eds), Proc. Fifth G A M M  Con$ on Numerical Methods in Fluid 
Mechanics, Vieweg, Braunschweig, 1984, pp. 57-64. 

14. J. C. Wu and M. M. Wahbah, ‘Numerical solution ofviscous flow equations usingintegral representations’. Proc. Fifih 
Int. Conf on Numerical Methods in Fluid Dynamics; Lecture Notes in Physics, 59, 448453 (1976). 

15. R. Peyret and T. D. Taylor, Computational Methods for  Fluid Flow, Springer Verlag, 1983. 
16. R. Glowinski and 0. Pironneau, ‘Numerical methods for the biharmonic equation and for the two dimensional Stokes 

17. S. C.  R. Dennis and L. Quartapelle, ‘Direct solution of the vorticity-stream function ordinary differential equations by 

18. S. C. R. Dennis and L. Quartapelle, ‘Spectral algorithms for vector elliptic equations in a spherical gap’, J .  Comput. 

19. L. Tuckerman, ‘Formation of Taylor vortices in spherical Couette flow’, PhD.  Thesis, MIT, Cambridge, 1983. 
20. .I. M. Vanel, R. Peyret and P. Bontoux, ‘A pseudo-spectral solution of vorticity-stream function equations using the 

influence matrix technique’, in K. W. Morton and M. I. Baines (eds), Numerical Methods for  Fluids Dynamics ! I ,  
Clarendon Press, Oxford, 1986, pp. 463475. 

21. U. Ehrenstein, ‘Mtthodes spectrales de resolution des equations de Stokes et de Navier-Stokes. Application a des 
ecoulements de convection double-diffusive’, These Doctorat, Mathematiques appliqubes, Universite de Nice, 1986. 

22. U. Ehrenstein and R. Peyret, ‘A collocation Chebyshev method for solving Stokes-type equations’, Sixth Int. Symp. on 
Finite Element Methods in Flow Problems, Antibes, 16-20 June, 1986. 

23. D. B. Haidvogel and T. Zang, ‘The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials’, J .  
Comput. Phys., 30, 167-180 (1979). 

24. D. Gottlieb and L. Lustman, ‘The spectrum of the Chebyshev collocation operator for the heat equation’, SIAM J .  
Numer. Anal., 20, 903-921 ( 1  983). 

25. P. Haldenwang, G. Labrosse, S. Abboudi and M. Deville, ‘Chebyshev 3-D spectral and 2-D pseudospectral solvers for 
the Helmholtz equation’, J .  Comput. Phys., 55, 115-128 (1984). 

26. C. Canuto and A. Quarteroni, ‘Preconditioned minimal residual methods for Chebyshev spectral calculations’, J .  
Comput. Phys., 60, 315-357 (1985). 

27. Y. Demay, J. M. Lacroix, R. Peyret and J. M. Vanel, ‘Numerical experiments on stratified fluid subject to heating’, 
7hird Int. Syrnp. on Stratijed Flow, Pasadena, 3-5 February, 1987. 

28. A. R. Gourlay and D. F. Griffiths, The Finite Difference Method in Purtial Diflerential Equations, Wiley, 1980. 
29. S. A. Orszag and D. Gottlieb, Numerical Analysis of Spectral Methods; Theory and Applicutions, CBMS Regional 

30. G .  Veronis, ‘Effect of a stabilizing gradient of solute on thermal convection’, J .  Fluid Mech., 34, 315-336 (1968). 
31. H. E. Huppert and D. R. Moore, ‘Nonlinear double-diffusive convection’. J .  Fluid Mech.. 78. 851-854 (1976). 

problem’, SIAM Rev., 12, 167-212 (1979). 

a Chebyshev approximation’, J .  Comput. Phys., 52, 448463 (1983). 

Phys., 61, 218-241 (1985). 

Conference Series in Applied Mathematics, SIAM, 1977. 

\ I  

32. S. M. Chang, S. A. Korpela and Y. Lee, ‘Double-diffusive convection in the diffusive regime’, Appl. Sci. Rex ,  39, 
301-319 (1982). 

33. E. Knobloch, D. R. Moore, J.  Toomre and N. 0. Weiss, ‘Transitions to chaos in two-dimensional double-diffusive 

34. E. Knobloch, A. E. Deane, J .  Toomre and D. R. Moore, ‘Double diffusive waves’, Contemp. Math., 56,203-216 (1986). 
35. A. E. Deane, E. Knobloch and J. Toomre, ‘Traveling waves and chaos in thermolutal convection’, Phys Rev. A ,  36, 

convection’, J .  Fluid Mech., 166, 409448 (1986). 

2862-2869 (1 987). 


