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SUMMARY

A Chebyshev collocation method for solving the unsteady two-dimensional Navier-Stokes equations in
vorticity-streamfunction variables is presented and discussed. The discretization in time is obtained through
a class of semi-implicit finite difference schemes. Thus at each time cycle the problem reduces to a Stokes-type
problem which is solved by means of the influence matrix technique leading to the solution of Helmholtz-type
equations with Dirichlet boundary conditions. Theoretical results on the stability of the method are given.
Then a matrix diagonalization procedure for solving the algebraic system resulting from the Chebyshev
collocation approximation of the Helmholtz equation is developed and its accuracy is tested. Numerical
results are given for the Stokes and the Navier—Stokes equations. Finally the method is applied to a double-
diffusive convection problem concerning the stability of a fluid stratified by salinity and heated from below.
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[. INTRODUCTION

During the last ten years a number of spectral methods have been proposed for the numerical
solution of the Navier-Stokes equations for incompressible fluids. Most of them concern the
equations in velocity—pressure variables, with various ways of handling the incompressibility
condition.!”!' However, for two-dimensional flows the formulation of the Navier-Stokes
equations using vorticity w and streamfunction y as dependent variables may be considered. The
main advantage of this formulation is the automatic satisfaction of the incompressibility
condition. Moreover, the number of equations to be solved is less than the velocity—pressure
formulation. This fact, which could seem to be of minor interest, becomes really important when a
large number of modes and many time cycles are needed to describe the solution. The generally
recognized drawback to the vorticity-streamfunction formulation is the lack of boundary
conditions for the vorticity, while there are two conditions for the streamfunction. The common
way to surmount this difficulty in finite difference methods is to define @ on the boundary by the
equation w = —Ay; this has been applied to spectral methods.!? 13 Other techniques based on
Green’s formula and used with success in finite difference!# ** or finite element methods!® have
been considered for spectral approximation to Stokes-type problems.!7- 18

In the present Chebyshev collocation method the problem of boundary conditious is solved by
means of the influence matrix technique. This technique was introduced® to enforce the
incompressibility condition at a boundary in a Chebyshev tau method for solving the primitive
variable equations. Its application to the vorticity-streamfunction was considered!® in a study of
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axisymmetrical spherical flow, so that the boundary value problem was actually one-dimensional.
Also, ordinary differential equations modelling Stokes one-dimensional problems were solved by
this technique.!” The application of the influence matrix technique to two-dimensional boundary
problems is not straightforward. The main difficulty is of a mathematical nature and lies in the
dimension of the spaces in which the solution must be looked for. In Reference 20 a hybrid
Chebyshev tau collocation method was proposed in which the above difficulty was removed by
approximating the streamfunction with more Chebyshev polynomials than the vorticity. In the
pure collocation method proposed here the remedy consists in diminishing the number of
boundary points on which the condition on the normal derivative of  is enforced. Theoretical
results obtained in Reference 21 and briefly exposed below show that the resulting numerical
solution for Y is unique while the values of w are determined in a unique way at the inner
collocation points. After completion of the solution the boundary values of w can be obtained by
using the equation w= — Ay, for example.

In Section 2 the discretization in time of the Navier-Stokes equations is introduced. This is
obtained through a three-parameter family of semi-implicit schemes where the diffusive term
is considered in an implicit manner while the convective term is evaluated explicitly. Hence at each
time step a Stokes-type problem has to be solved. The solution method of such a problem using
the influence matrix technique is studied in Section 3; then the algorithm for the Navier—Stokes
equations is described in Section 4. The influence matrix technique leads to the solution of
Helmholtz and Poisson equations with Dirichlet conditions; hence a direct Helmholtz solver
based on a matrix diagonalization procedure is developed in Section 5. Then Section 6 is devoted
to numerical results for Poisson and Stokes equations. Theoretical results on the stability of the
influence matrix method in an unsteady linear case are given in Section 7. Then in Section 8
numerical results for the Navier—Stokes equations are presented. Finally Section 9 is devoted to
the application of the method to the solution of the equations governing double-diffusive
convection flows by considering the motion of a fluid salted and heated from below.

2. THE NAVIER-STOKES EQUATIONS AND THEIR TEMPORAL
DISCRETIZATION

The two-dimensional unsteady Navier-Stokes equations for an incompressible fluid are written
using the vorticity & and the streamfunction y as dependent variables:

3
a—(:+V°ch—vAw=f, (1)

Ay +w=0. (2

In these equations v is the kinematic viscosity and fis a given forcing term. The velocity vector
V =(u, v} is related to the streamfunction ¢ by

u=0oy/dy, v=—0dY/ox (3)
and to the vorticity w by
w=0v/0x —0u/dy. 4

Equations (1) and (2) are solved in a square domain D: —1<x, y<1, with the boundary
conditions
Y=g

o fon=h } on I'=0D, %)
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where g and h are given. The function g must satisfy the total flux condition

f (Vgt)yds=0.
r

In the above equations n and t are the unit vectors respectively normal and tangent to the
boundary I" of the domain D.
The initial condition at t=0 is
V=V°=(u° °) (V-V°=0); (6)
then
w=w°=0v°/dx —0u®/dy. @)

The time discretization makes use of a finite difference scheme. More precisely, we consider a
family of schemes parametrized with ¢, 8,, 8, and «, so that the system (1), (2) is discretized
according to

1+t —2e"—(1—gw" !
2At

_V[BIAwrﬂrl +02Aa)n+(1_91_gz)Awn—l]zfn+a’ A¢n+1 +(U"+1=0, (8)

+(20, +0,)A"+(1—20, —6,) A" 1

where A=V-Vw. In these equations v™ ~w(x, y, mAt) and Y™ ~y(x, y, mAt). The scheme (8) is
first-order accurate whatever the values of the parameters and is second-order accurate if

£=2(20,+0,—1)="2a. ©)

The case e=1, §, =1/2, ,=1/2 corresponds to the usual Adams—Bashforth/Crank-Nicolson
(AB/CN) scheme and the case ¢=2, 8, =1, 6,=0 gives the Adams-Bashforth/second-order
backward Euler (AB/2BE) scheme introduced in Reference 20 for the Navier-Stokes equations.
The stability of the above family of schemes (assuming 6, +8, =1) applied to the solution of the
one-dimensional advection—diffusion equation with a Chebyshev collocation method has been
studied in Reference 6. The stability in the case of the Stokes equations will be considered later.

At each time cycle we have to solve the following Stokes-type problem:

Awn+1_o.wn+1=F )
Alll"+l+w"+1=0 } in D (10)
with the boundary conditions
lpn«#lzgn+1
g+ fon=ees | 00 T an

In (10) the right-hand side F contains all terms of (8) at time levels n and n— 1 and the forcing term
£+, finally

T 20,vAt

To start the integration (n=0) we assume o~ ' =w® and A~ ! = 4° so that the scheme gives the
solution at t=2At/3 rather than at As. The solution at t=At is then defined by a linear
extrapolation.

In the next section we describe a direct solver for the problem (10), (11) using a Chebyshev
collocation method.

0.
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3. A CHEBYSHEV COLLOCATION STOKES SOLVER

Because the problem (10), (11) has to be solved a large number of times in the course of a time-
dependent solution, the Stokes solver must be efficient. First of all, this is obtained by considering
a direct method avoiding any iterative procedure. Moreover, the influence matrix technique
considered here reduces the problem to the solution of some number of Helmholtz and Poisson
equations with Dirichlet conditions. Most of these Helmholtz-type problems are time-
independent and are solved once and for all before starting integration in time.

The solution of the Helmholtz-type problems is obtained through a direct method based on a
one-off matrix diagonalization process. Hence at each time cycle the solution of the Navier—Stokes
equations reduces to the evaluation of matrix products, which can be performed efficiently on a
vector computer. The Helmholtz solver will be described in the next section. In the present section
we explain the influence matrix technique for solving (10), (11)}—a technique which was presented
briefly in Reference 22.

For simplicity we write (10), (11) omitting the superscript n+ 1 so that the system reads

Aw—ow=F .

A +0=0 } in D, (12)
Y=g
oujon=h } onT. (13)

Wenote that T = U?z , T'i (see Figure 1); then g|r, =g;, h|r, = h;, 1 <i<4. The functions g and h are
assumed to satisfy the following conditions of compatibility at the corners of D.

(i) Continuity of g

9:(1)=g,(1), g1 (—1D=g.(1),
9:(N)=g,(=1),  gs(—D=ga(-1). (14)
(i) Compatibility of g and h
hy (1)=g5(1), hy(—=1)=g,(1),
h,(1)=g(1), hy(—1)=g3(1),
—hs()=g%(=1), —hs(—1)=gL(-1), (15)

—h()=g\(=1), —h=1)=g3(-D.

p—
-

N
v}
N

« ¥

-1ir
3

Figure 1. The domain D and its boundary T={J;_, '
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(iii) Crossed derivatives
hy(1)=hy(1), hi(—1)=—hi(1),
hs(1)= —h3(=1), h3(—D=hi(-1). (16)
These conditions ensure that the trace of  and of its derivatives on the boundary I are defined at
the corners, and also that the equality 6%y/0xdy = d%i/dy Ox is satisfied at the corners.

The problem (12), (13) is approximated by means of a collocation method. Let Py be the set of
real polynomials of degree at most equal to N and denote by

x,=cos(kn/N), 0<k<N, (17)

the Chebyshev collocation points. In terms of Chebyshev polynomial expansion, a function ¢(x)
approximate with the polynomial ¢y € Py can be written as

EEP A (18)

and the points x, defined by (17) are the extrema of the Chebyshev polynomial Ty(x). Then, there
exist coefficients d{(k, i), 0<i, k<N, such that the pth derivative is expressed by

PO _ $ g0k, j)guix,) (19)
dx? =0

The expressions for d@’ for the first and second derivatives (p=1, 2) are given in the Appendix.
Let us define now by D, the set of collocation points in the interior of D:

D.={x;, y; 1<k<N, 1<i<M},

where x,=cos(kn/N), y,=cos(In/M); and by I'_ the set of collocation points on the boundary.
Finally, we denote by Py _,, the set of polynomials of degree at most equal to N in x and to M in y.
Then the Chebyshev collocation approximation of the system (12), (13) consists in searching the
oy m€Py a and Yy, €Py o solution of problem P:

Awy, y—= ooy, u=F } in D,, 0)
AYy pmt oy =0
U m=9

' r.. 21

oy wiin=h § T @l

The various derivatives occurring in this system are expressed by formulae of the type (19), so that
equations (20), (21) form an algebraic system for the values of wy, , and ¥y, at the collocation
points.

To solve problem P we decompose its solution (wy, u, ¥y, 4r) according to

CON,M'—"E’N,M‘*‘E_’N,M
‘l/N,M=‘/lN,M+¢N,Ma

where @y, 1/~/N‘M, @y, and J/N,M belong to Py . The pair (@y, », |/~/N, ) 18 the solution of
problem P:

(22)

Ay y—0dy y=F in D, 23)
Dy =0 on I,

Ay y=—dy p» in D,

4
Un, M=9 on I @4
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The pair (D, p» @N’M) is the solution of problem P:

Aa)N_*M“O'CE)N,M=0 } in D.. 253
Al//N,M+wN,M=0
J]N m=0
- 7 = n .. 25b
OYn m/On=h—0yy y/on=h ° (25b)

The solution of problem P reduces to the successive solution of two elliptic equations with
Dirichiet boundary conditions. The difficulty remains in the solution of problem P. To solve this
problem we are looking for a Dirichlet boundary condition y for @y, such that if

Ady y—0dy, =0 1D,

_ (26)
Oy, m=H on I
and
Z}'EN,M="Q—’N,M in D, 27)
Yn. u=0 on I,
then
Oy y/on=h on T.. (28)

This problem, consisting of (26)(28), will be called problem P,. We note that u|,=p;, 1 <i<4,so
that p,, u;ePy and u,, u, Py Furthermore, the conditions of compatibility (14) are satisfied by
the u;; thus u belongs to a vector space of dimension 2(N + M) which will be denoted by Ey .

In fact the problem P, is not well posed because we can find boundary conditions u such that if

AC‘_)N,M“GU_)N,M=0 in Dc,
oy y=p on I, (29)
then
oy =0 in D, (30)

The proof of this assertion is too long to be reproduced here. We only outline the main steps of the
proof and refer to Reference 21 for details of the analysis,

We have to define the vector space Gy = Ey ., composed of the boundary conditions y such
that (29), (30) are satisfied. For that we consider ucEy ,, and introduce the notations

Hi=u(x), =13,  0<k<N,
i =), i=2,4, 0<l<M. 31

Now we consider the polynomial w¥ ,€Py, 5 such that w¥ , =0 on I'; and which coincides with
the solution @y, » of (29) at inner collocation points D,. Therefore this polynomial w} ,, satisfies
the equations

Awﬁ,M—UC@;,M: —Xx: in D,
ok =0 onTl, (32)
where

Xk, ,=d§&’(l, 0) #1‘k+d§v2)(k, 0) Ha, t+d%)(l, M)M3,,,+d(,3)(k, N)#a,,t (33)
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for I<k<N -1, 1<I<M—1. The quantities d{¥) and d{?’ are the elements of the second-order
derivation matrix defined in (19) and given in the Appendix. Note that the values of u at the
corners of the domain D do not appear in (33).

Now, if we suppose that the solution @y, », of (29) satisfies (30), then clearly the solution w} ,, of
(32) must be the zero polynomial, which is equivalent to the condition

%e1=0, 1<k<N-1, I<I<SM-1. (34)
Finally equations (34) are found to be satisfied if and only if
A, 1=0, X m—1=0, 2<k<N-2,
x1,1=0, In-1.1=0, I<l<M-—1. (35)

Therefore equations (35) give necessary and sufficient conditions which must be satisfied by the
boundary values p; ,i=1,3,1<k<N—1,and y; ;,i=2,4, 1 <I<M—1, to ensure that ueGy_ .
The algebraic system (35) consists of 2(N + M —4) equations for 2(N + M — 2) unknowns; therefore
its rank is 2(N + M —4) at most. By writing down the matrix of system (35) it is easily seen that an
invertible minor of order 2(N+ M —4) can be extracted by eliminating the four columns
corresponding to yt; 1, 41 x—1, H3, ; and g3 y_,,1.e. corresponding respectively to the collocation
points

Ay ={xy, 1), Ar=(xy-1, 1) Ay=(x;, —1), Ag=(xy-1,— 1) (36a)

It follows that the system (35) defines y; ,i=1,3,2<k<N-—2,and y; |,i=2,4,1<I<M—1,in
terms of 4, (, iy, -1, Ha,1 and g3 y_, in a unique way. It is likely that other choices of points
leading to an invertible subsystem of (35) are possible, for example points more regularly
distributed on the boundary. However, the way considered here seems to be the simplest to prove.

Thus the fact that the system (35) is of maximal rank and the above remark concerning the
values of p at the corners allow us to conclude that the dimension of Gy_j, is eight. Then, by
considering the points 4,, i=1, .. ., 4, defined by (36a) and also the corners

As=(L1), Ag=(-11), A;=(1,-1), Ag=(-1-1) (36b)
we define a complementary space Hy ,, of Gy by
Hy, y={peEy, y/1M4;)=0, 1<i<8}.

It follows that we have to look for a boundary condition u belonging to Hy ,, in order to solve
problem P, the dimension of Hy_,, being 2(N + M —4).
Let us now consider the boundary condition (28); when it is satisfied we have

Oy m/on=hp, on T, (37

where A, is such that Epi = Erlrp 1 <i<4, are the polynomials interpolating h| r, on the collocation
points of I';. For this to be true the EP‘_ have to satisfy both conditions (15) where g,=0 and
conditions (16). These conditions will be satisfied up to the accuracy of the Chebyshev polynomial
approximation to the boundary conditions g and h of (21). Therefore the conditions (15) imply that

hp(£1)=0, 1<i<4,

and by the further conditions (16) it can be seen that hp is entirely determined by its values at the
points of T,=T,—~{A,,..., Ag}, where A;, 1<i<8, are the points defined in (36). Thus k,
belongs to a vector space of dimension 2(N + M —4).
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If we suppose now that the only solutions of problem P, with
ale, M/an = 0 on F

are such that ueGy , then according to the above considerations the problem P, admits a unique
solution pue Hy, y. Furthermore, by the definition of the vector space Gy , we see that the
solution of problem P, is unique for §/y_, but only the values of @y in D, are determined in a
unique manner.

The method of solution of problem P, is based upon the technique of superposition of
elementary solutions. More precisely, if #;, 1 <j <J =2(N + M —4), represent the points of I';, we
define the characteristic function p;e Ey , by p;(n;)=1and p;=0 on all other points of I'.. Then
we define the family (w;, ¥;), 1 <j<J, where w;, ¥;€Py . as the solutions of

Awj—ow;=0 in D,

w;=p; onl,, (38)
Ay ;= —w; in D,
Y;=0 on [, (39

and the solution y, @y, . l/;N’ u of problem P, is constructed as

J
U= Z }-jpj, (40)

(:XZ) ,-Z’l( ) @1)

The coefficients 4;, 1 <j<J, are determined so that the Neumann boundary condition (37) is
satisfied on points #; of I',. By doing that we get the algebraic system

MA=H,

where A=(4;,...,4,)", H=(hp(n,),..., hp(n,))" and the influence matrix M=[m; ],
1 <i,j<J, is defined by

oy, ,
mi.jzgn—](ni)a nel’;.

When A is known the solution wy 5, ¥y, 4 is determined by (22) and (41). As already pointed
out, the method gives wy ,, in a unique way in D, only. The values of wy_,, on I’ given by the
algorithm would be correct if the exact solution w was zero at points 4;, | <i<8. It is obvious that
this is not true in general and the values of wy, 4 on I', (if needed) can be defined by the equation
Oy, = —AYy p written on I'_.

In the tau collocation influence matrix technique introduced in Reference 20 the difficulty
associated with the non-uniqueness of u¢ was surmounted by approximating w and ¥ with
polynomials belonging to Py, ,, and Py, 5., respectively.

4. ALGORITHM FOR THE NAVIER-STOKES EQUATIONS

As explained in Section 2, the solution of the unsteady Navier—Stokes equations is reduced to the
solution of a Stokes-type problem at each time step. This problem is solved by the influence matrix
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technique described in the previous section. The matrix of influence M being time-independent, it
can be constructed and inverted once and for all before starting the time integration. Then at each

time step we solve the problem P which defines (O, m» " ~. m)» we construct H and A is determined
by

A=M"'H

At this point several ways of calculating (wy ., ¥, ») are possible according to the computer
facilities available (memory, vectorization or parallelization). For example:

1. The solution (wy, », Yy, u) is calculated from (22) with (@y, 4, le’ u) obtained through the
summation (41).

2. The summation can be reduced by calculating @N‘ u from (41) and @y ,, by the equation
Oy =AYy u

3. The summation can be avoided completely by calculating (wy, u, ¥ n. ) as the solution of
the two Dirichlet problems

Awy, y—owy y=F in D,
Oy pm;)=4;, nel, 1<j<d,
oy =0 on I.-T%
and
AYy y=—on u in D,
Yy u=0 on [..

This third technique is used in the calculations reported below.

Therefore the solution of the Navier-Stokes equations is reduced to: (1) the evaluation of the
right-hand side F of equation (23); (2) the solution of Helmholtz-type equations with Dirichlet
boundary conditions. The global efficiency of the method depends strongly on the manner in
which these two operations are performed.

The evaluation of the non-linear convective term V-V in F can be done either by the usual
pseudospectral technique (products in the physical space, differentiations in the spectral space,
link of both spaces by a FFT algorithm) or by matrix products in the physical plane using (19) for
derivatives. This second technique has been employed here using an efficient vectorized
subroutine for matrix ‘products (MXM of SCILIB). For a moderate number of Chebyshev
polynomials this technique is competitive with the pseudospectral technique.

The Helmholtz equations are solved by means of a fast direct solver which is very efficient when
a large number of problems have to be solved like here. This solver is described in the following
section.

5. A DIRECT HELMHOLTZ SOLVER

The Helmholtz solver is an adaptation to the case of the collocation Chebyshev approximation of
the matrix diagonalization procedure introduced in Reference 23 for the tau Chebyshev
approximation. To illustrate the technique we consider the Dirichlet problem

Au—ou=f in D, (42)
u=g onl, (43)
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where o =const >0, fand g are given. Let uy_,, be the polynomial approximation to the solution of
(42), (43) and (x;, ¥,), 0<k < N, 0<[< M, be the Chebyshev collocation points. The derivatives in
(42) are expressed in terms of uy_ (X, ¥;) by formulae of the type (19). Then the boundary values
Uy alxp, £1), 1<k<N—1,and uy y(+1, y,), 0<I<M, are eliminated thanks to the boundary
condition (43). Hence the matrix Uy, =[uy 4 (%, )], 1<k<N—1,1<I< M —1,is the solution
of

DPUy y+Uy yDPT—6cUy y=F, (44)
where D and D{? are the matrices

DP=[dP kD], 1<kI<N-1,

DP=[d@ kD], l1<kl<M—1,

with d’ and dp the coefficients appearing in equation (19) and given in the Appendix. Finally %#
is the matrix

F=[F(x, y)], 1<k<N-—1, 1<I<M-—1,
with
Flx, y)=1(xe, y)—dP (L, 0)g,(x)—dPU M )g3(xk)—d5\fg)(ka 0)g,(y;)—dP (k, N)ga(y),

where we have introduced, as in Section 3, g;=g¢|r, and I'= U?= , T'; (see Figure 1). As proven in
Reference 24, the eigenvalues of each of the matrices D and D{? are real, distinct and negative.
These matrices can be diagonalized; therefore

S, 'DPS, =diag(A, 1, ..., A n_1)=A,,
where 4, ,..., 4, y-, are the eigenvalues of D¥ and S, is the matrix of the associated
eigenvectors. By multiplying (44) on the left by S 7! we obtain
AUy + Uy yDPT =00y = £, (45)
where
GN,M=S;1UN,M=[ak,l]’ g}=s;lf=[ﬁk,z]-

Therefore the solution of the system (44) reduces to the solution of N—1 ‘one-dimensional’
systems:

[D@+(4, ,—o)1]0,=%,, 1<k<N-1, (46)
where
ﬁk=(ﬁk,17 BRI ﬁk,M—l)Ta ’é'vk:(ﬁk,la sy Fk,M—l)T~

The solution of (46) can be obtained by direct inversion without or with preconditioning to
prevent numerical inaccuracies due to the ill conditioning of the matrix D+ (4, ,—o)lL

Following Reference 25, we may also perform a second diagonalization in the y-direction. In
this case D{? is diagonalized as

S, D@8, =diag(A, ,, - . ., Ay y1)=A,
and equation (45) becomes, after multiplication on the right by (S, !)",

AOy (S +0y (8, )TA,—0 Oy (S; )= (S; 1), (47)
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where we have taken into account STDPT(S;*)T=A,. Equation (47) can be rewritten as
(Ax,k-i-/‘(y,,—a')ﬁk,,:i;k,,, ]SkSN—l, 1_<.l_<_M'_‘1, (48)

where &, ; and F, , are the entries of matrices Uy ,(S; )T and £(S; *)T respectively. Equations
(48) give the solution i, from which the solution uy ,(x,, y,) can be obtained.

Numerical results from the various techniques described above will be presented in Section 6.

It must be remembered that algorithms of diagonalization are efficient when a large number of
Helmholtz problems (42), (43) have to be solved in the course of an unsteady calculation. In this
case the calculation of eigenvalues, eigenvectors and the inversion of the matrices can be done once
and for all before starting the time integration.

Finally we point out that the method can be applied to any type of boundary conditions,?! the
technique being to eliminate the boundary values thanks to the boundary conditions, as done in
the Dirichlet case.

6. NUMERICAL RESULTS FOR POISSON AND STOKES EQUATIONS

The algorithms described in the previous sections have been applied to test cases in order to
evaluate their properties.

6.1. Poisson equation

We consider the Poisson equation with Dirichlet conditions

Au=f inD: —1<x, y<1, (49a)
u=0 on I'=aD, {49b)

with the exact solution
u,, =sin(4nx) sin(4ny) (50)

which defines the forcing term f in (49a). The solution of problem (49) is obtained by the
collocation Chebyshev method using the matrix diagonalization procedure described in Section 5.
Table I shows the maximum error on collocation points given by the various techniques of
Section 5. The degree of the polynomials is the same in both directions, that is N=M. The
calculations were done with a CRAY 1S computer (providing 14 accurate digits).

(i) E, is the error obtained when the matrices L, =D +(4, ,—0)I, 1 <k< N —1, in (46) are
inverted by using the subroutines SGECO/SGEDI of SCILIB. The important loss of
accuracy between N =32 and N = 64 is mainly due to the ill conditioning of the matrices L.

Table 1. Errors for the Poisson equation

N=M E, E, E, E, Es
12 883 E-2 883 E-2 8-83 E-2 883E-2  270E-1
16 525 E-3 525 E-3 525 E-3 525 E-3 333E-2
20 7-52 E-5 752 E-5 752E-5  7T52E-S 819 E-4
24 405E-7  405E7  405E7  405E-7 689 E-6
32 765E-12  284E-12  286E-12  287E-12  495E-11
40 138E-11  123E-12  126E-12 147E-12 606 E-12
48 1'54E-11  231E-12  221E-12  363E-12  879E-12

64 207E-11 368 E-12 3-78 E-12 390 E-12 293 E-11
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(i) E, is the error obtained by preconditioning L, before inversion. Let A, be the
matrix associated with the three-point centred finite difference approximation
of 02/0y* + (4, x—0)1 using the Chebyshev points. This tridiagonal matrix A, serves
as a preconditioning matrix for L,, so that the matrices to be inverted are now
B,=A;'L,, 1<k<N-—1, which are well conditioned.?® The inversion is performed
again with SGECO/SGEDI. The gain in accuracy for high values of N is clearly seen.

(iii) However, equivalent results (error E;) are obtained without preconditioning but by
inverting L, with a more elaborate inversion subroutine (LINV2F of IMSL).

(iv) The error E, given by the full diagonalization technique (equation (48)) is comparable to
errors E, and Ej.

(v) The error E5 concerns the case of the tau Chebyshev approximation of (49) associated with
the partial diagonalization algorithm'#2° inspired by Reference 23. The solution of the
resulting one-dimensional problems reduces to the inversion of quasi-tridiagonal matrices
(for odd and even modes).

We may observe that the collocation method is slightly more accurate than the tau method
provided the problem of ill conditioning of collocation matrices is correctly handled. The loss of
accuracy observed when N is large can be attributed to round-off errors associated with the
various numerical processes: calculation of eigenvalues and eigenvectors, inversion of matrices,
etc. In this respect it must be pointed out that the conditioning of the eigenvector matrix S, (or S,)
is comparable and even better in the collocation method. For 24 < N <64 we found the condition
number

K (S,) = /(o Aumin) ~ 0-80 NO25,

where 4., and 4, are respectively the largest and smallest eigenvalues of S,ST. For N =32 this
gives K =~ 1-90 which must be compared with K ~4-24 obtained in the tau method of Reference 23.

6.2. Stokes equations

The collocation Chebyshev influence matrix technique described in Section 4 has been used to
solve the Stokes problem

Ao=f .
AV + =0 in D: —l<x,y<], (51)
Yy=0
oujon=h on I'=0D, (52)
with the exact solution
Y., =sin(4nx)sin(4my), W =321, (53)

which defines f and h. The Poisson equations occurring in the influence matrix method
are solved by the algorithm described in (ii) of Section 6.1 (partial matrix diagonalization,
inversion after finite difference preconditioning). The results are reported in Table II: E¢ with
¢ ={y, w} is the maximum error on all collocation points normalized with the maximum norm
é1lo; ES, is the analogous error on inner collocation points; E$ is the discrete L, error
normalized by the L, norm of ¢; E¢ is the maximum error, normalized with | ¢ |, of the
Chebyshev coeflicients ¢, (equation (18)) with respect to the coefficients of the exact solution. Both
these spectra being calculated by means of a FFT algorithm using the same number of collocation
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Table II. Errors for the Stokes equations

N=M  E% E% E® E®, E% B, Ee

16 1:32E—-2 1-40E -2 2-:63E—1 296E—2 2-88E—1 392E-3 820E-—2
24 375E—-6 3-10E—-6 1-69E—4 7-35E—6 1-67E—4 9-47E-17 469E—-5
32 355E-—-11  281E-11 2-8SE—-9  T16E—11 272E—9  857E—12 T726E—10
40 295E—12 I'19E—12 336E—-t1 361E—12 165E—11 314E-13 500E—-12
48 345E—12  V77E—12  557E—11 424E-12 409E—11 S520E—-13 [17E-11
64 468E—12 2:55E—12 2:56E—10 1-58E—11 179E—11 799E—-13 592E-11

points, the quantity £ measures the accuracy of the numerical algorithm but not the accuracy of
the polynomial approximation.

The comparison of E€ and E®; in Table II shows that the error is maximum on the boundary
itself. We recall that the influence matrix method gives the values of w at inner collocation points
only. Here the boundary values of @ have been determined by using w = — Ay on the boundary.

We have also compared the results given by the present collocation method with those obtained
through the tau collocation influence matrix technique proposed in Reference 20. The results are
comparable, with again some advantage to the pure collocation approximation. It was observed
that the influence matrix is better conditioned in the present method. For the Stokes-type problem
(12), (13), we numerically found the condition number

K(M)=~a(c)N**

with a(0)=0-46 and a(1000)=0-03.
The high accuracy of the method was also made evident in Reference 22 through the calculation
of the secondary eddies appearing in the Stokes flow in a corner.

7. STABILITY OF THE INFLUENCE MATRIX TECHNIQUE

When the influence matrix technique is employed for solving the Stokes-type problem at each time
cycle of the unsteady solution of the Navier-Stokes equation an important question concerns the
stability of the time discretization scheme. Results on the stability of the schemes of type (8) applied
to the solution of the one-dimensional advection-diffusion equation have been presented in
Reference 6. However, these results cannot be applied directly to the present problem because of
the presence of the y-equation and mainly because of the boundary conditions and the manner of
their implementation through the influence matrix method.

In this section some theoretical results on the stability of the method are given in the special case
where (1) convective terms in (1) are neglected (the unsteady Stokes approximation) and (2) the
solution is assumed to be 2rn-periodic in the y-direction. Then, by expanding the solution w(x, y, 1),
Y (x, y, 1) in Fourier series in the y-direction, we obtain for each Fourier component W, (x, 1),
¥,(x, t) corresponding to the frequency « the following problem:

0w, /0t —v(0?w,)0x* —Kk*»,) =0
(02,/0x?) — K2, + 0, =0 } ~l<x<l, (54
¥ (+1, =0, oW, /ox (1, 1)=0, (55)
w,(x, 0)=w(x), (56)

where we have assumed f=g=h=0. This assumption is not restrictive for a stability analysis.
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The above system is discretized with respect to time according to the scheme (8}, so that w?2*! (x_),
¥"* ' (x) is the solution of a one-dimensional Stokes-type problem analogous to (10), (1. Th‘xs
problem is solved by using the collocation Chebyshev influence matrix method developed in
Section 3. We denote by (w4*!, Y4+") the polynomial approximation to the solution (w}**,

Y"*1). The method involves the following decomposition:

mn+1 (I)n+l 2 . iy
( :+1>=<":+1)+Z }‘j+1<‘l,m>' (57
N N Jj=1 N

The pair (@3 ", ¥4 ') is the solution of problem P analogous to (23), (24). The pairs (w;y, ¥;n),
j=1,2, are analogous to (w;, ;) defined in (38), (39) with w,y(—-1)=1, w n(1}=0, o, y(—1}=0,
w,y(1)=1. Finally the coefficients 27*', j=1, 2, are determined so that the second boundary
condition (55) is satisfied. The values 7 (x), x,=cos(kn/N), 0<k <N, can be expressed in terms
of the values @%(x,) and it is the same for the coefficients 17, j=1, 2. Therefore the study of the
stability of the scheme can be reduced to the study of

Q”+1=AQ"+BQ"_1, (58)

where O™ =[@7(x,), . . ., ®2(xy—,)]%, A and B are two matrices which depend on vAt, N, k? and
on the parameters of the scheme ¢, 0, and 6,.
By introducing ®" ="', equation (58) becomes

n+1 n
(5)0+(5)

A B
E:(I 0). (60)

A necessary condition for stability is that p(E)< 1 where p(E) is the spectral radius of E. For
some special schemes of the family (8) the following results are proven in Reference 21. For the
schemes 0< 6, <1, 8,=1—0, and either e=1 or ¢=26, the matrix E has at least one eigenvalue
whose absolute value is (1 —6,)/60,. Also, for the schemes 0 <6, <1,6,=0and ¢=2(28, — 1), E has
eigenvalues equal to ii\/ [(1-—-6,)/8,]. Hence the condition p(E)< | necessitates 6, > 1/2. In fact
for all these special schemes it can be proven that

iy pE)>1 if 0<0,<1/2,

(i) p(E)y=1 if 6,=1/2,
(ii) p(E)y<1 if 1/2<6,<L.

where

The result (i) is remarkable: it shows that schemes for which 6, < 1/2 are unconditionally
unstable, while the same schemes applied to the diffusion equation alone are conditionally stable.®
The result (ii) shows that the stability of the usual Crank—Nicoison scheme (¢= 1,6, =6, =1/2) can
be defined as marginal. Finally schemes belonging to case (iii) seem to have the best property of
stability. In particular the second-order Euler backward scheme (¢ =2, 6, = 1, 8, =0) has been used
with success?%-27 in the solution of the Navier-Stokes equations. Its application to the calculation
of a time-periodic flow (Section 9) showing no damping of the oscillations is a guarantee that this
scheme is not too dissipative, even if it damps the higher Chebyshev modes more than the
Crank—-Nicolson scheme does.

We emphasize the fact that the matrix E does not possess the properties permitting us to
conclude that p(E)<1 is sufficient for stability.’®?° So E is not normal and when it is
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diagonalizable (Crank-Nicolson scheme, for example) the dependence on At of the matrix of
eigenvectors of E prevents us obtaining a criterion of algebraic stability?® which would ensure the
convergence of the scheme. However, numerical experiments conducted in Reference 21 in the
case of the tau Chebyshev approximation (for which the same conclusions (i)iii) hold too) have
shown that the Crank--Nicolson scheme as well as the second-order backward Euler scheme (for
which E is not diagonalizable) are actually unconditionally stable.

8. NUMERICAL RESULTS FOR THE NAVIER-STOKES EQUATIONS

First the spatial accuracy of the method for solving the Navier-Stokes equations has been tested
on the exact solution

W=(1-2PA -y P07 o= —apl. (61)
which defines fin (1) and g =h=0in (5). The steady solution is computed by means of the AB/2BE
scheme (¢=2,8,=1, 0,=0in (8)) with V=0, w =0 as initial conditions and v= 1. Table III gives
the following errors: E, = E2| E, = E4 with E2 and EY defined in Section 6.2, E; = E obtained in
Reference 20 with a tau collocation method. The comparison between E, and E, again shows the

better accuracy of the present collocation method.
Then the accuracy in time has been checked on the unsteady solution

@_ 2n—1+sin(2nt)
ex 27r

with ¢{ given in (61). This defines fin (1), g=h=0 in (5) and the initial condition (6), (7). The
calculations have been done with v=1 and we have compared the error in time corresponding to
various schemes of second-order accuracy:

A e=1, 8,=1/2, 0,=1/2 (AB/CN scheme),
B. ¢=2, 8,=1, 0,=0 {AB/2BE scheme),
C. ¢=1, #,=3/4, 9,=0,
D. £=3/2, 0,=3/4, 6,=1/4.
The degree of the polynomials is the same in both directions: N =M =20. This number is

sufficient to represent correctly the spatial part of the solution (see Table III), so that the error
which appears is actually the error in time. Figure 2 displays the error

s e@=—su, 62

E =max { ”w(ci)"‘w'ﬂ'.unz/”wg)" l2}s (63)

where w2 and w? , are the values of the exact solution and of the numerical solution
respectively at t =nAt; | +||, is the discrete L, norm on the collocation points. The presence of three
levels in time in the scheme necessitates a starting-up procedure with a modified scheme, which in
the present case (Section 2) is first-order only. Hence the maximum in (63) is taken when the effect

Table III. Errors for the Navier-Stokes equations

N=M E, E, E,

10 221E-4 44TE-5 1-37E—4
12 357E-6 538E-7 201E-6
16 252E—10 3-00E~11 1-29E—~10
20 359E-—12 T74E—-13 222E—-12
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Figure 2. Error E is a function of Ar for various schemes

of the initialization has disappeared, that is when the periodicity of E is accurately established. It is
seen in Figure 2 that the AB/2BE scheme is slightly more accurate than the AB/CN scheme, at
least for the special solution considered here. The same conclusion was found in Reference 20.

Finally we have computed the steady flow in a square cavity 0 < X, ¥ < a. The velocity is zero on
three sides and is u= — 16 u, X*(a®> — X*)/a*, v=0 on the side Y =a. The Navier-Stokes equations
are made dimensionless by using a, u, and a/u, as reference length, velocity and time respectively;
Re is the corresponding Reynolds number. Then the change of variables x=2X —1, y=2Y—1is
done in order to express the Navier-Stokes equaticns in the domain D: — 1 < x, y < 1. The resuiting
equations were solved with the AB/2BE scheme by using homogeneous initial conditions. The
degree of the polynomials is the same in both directions (N = M). Table IV shows the maximum
time step At allowable for stability. We may observe the good stability properties of the scheme:
for instance, for Re =400 the critical At varies approximately as 1/N.

The steady solution is assumed to be reached when the normalized maximum residual on the
vorticity is 107°. Table V gives some characteristic results: M, is the maximum value of ¥ on
collocation points, M, is the maximum value of @ on the upper side y = 1 calculated on collocation
points and M, is the analogous maximum but calculated on 201 equispaced points. The co-
ordinates of the points where the maxima are reached are given in parenthesis. The quantity M,
provides a significant measure of the degree of convergence of the spatial approximation. So, for
Re=100, N =32 is sufficient to represent correctly the solution within a relative change of 1073,
On the other hand, in the case Re =400, N =32 is not sufficient to get an optimal representation of
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Table IV. Critical time step At (with an error

+1077)

N=M Re=100 Re=400
16 0194 0067
24 0-100 0047
£9) 0072 0033

Table V. Results for the cavity flow

Re=100 Re =400
N=M M, M, M, M, M, M,
16 8-5159E—2 13-3687 13-4663 8-5378E—2 252329 25-4675
(0-40-0-78) (0-60) (0:62) (0-40-0-60) (0-60) (062)
20 82695E —2 13-1780 13-4459 85213E—2 246693 24-9846
(0-42-0-73) (0-66) (062) (0-43-0.58) (0-65) (0-63)
24 83315E—2 13-4227 134446 85716E—2 249344 249333
(0-37-0.75) (0-63) (0-62) (0-43-0-63) (063) (0-63)
32 83402E —2 133422 13-4447 8-5480E —2 247845 249110
(0-40-0-74) (0-60) (062) (0-40-0-60) (0-65) (0-63)

the solution. Figure 3 compares the values of M, given by various spectral methods and we refer to
Reference 15 for analogous results obtained with finite difference methods.

Th CPU time on the CRAY 1S is 3-36 x 102 s/time step for N=M =16 and 1-32 x 10~ 2 s/time
step for N=M=32.

9. DOUBLE-DIFFUSIVE CONVECTION

9.1. Formulation of the problem

Double-diffusive convection deals with the motion of a fluid resulting from the combined effet of
gravitational acceleration and the diffusion of two components with different molecular diffus-
ivities. As usual, we designate by T, temperature, the component with the higher diffusivity x and
by S, salinity, the other component with diffusivity ;.

In this section we are interested in the application of the collocation Chebyshev method to the
calculation of the motion occurring when a fluid is salted and heated from below. This problem
has already been studied numerically in References 3035 by various methods, but none of these
was able to give results for the case of small values of the ratio T =kg/x; corresponding to actual
values of salt and heat in water (t~ 10~ 2) because of the numerical difficulties associated with the
complex structure of the salinity fields. Moreover, when 7 is small the large disparity between the
two time characteristic scales (thermal and solutal times) makes this a problem of the stiff type.
The numerical results given below in the case where t=0-0125 will show the ability of the
Chebyshev method to compute such flow fields.
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Figure 3. Maximum value of the vorticity M; =max w(x, y) on the moving boundary y=1

In References 30, 31 and 33-35 the flow takes place in an infinite horizontal strip, the periodicity
is assumed in the horizontal direction and the horizontal boundaries are assumed to be stress-free.
Finite difference methods are used in References 31, 33-35 and a Fourier series method is
considered in Reference 30. The case of a finite domain with no-slip boundary conditions was
computed in Reference 32 using a first-order finite difference method.

Here we consider the case of a finite rectangular domain D: 0<x < 4, 0< y< 1, the height H of
the domain being taken as the characteristic length. In dimensionless variables the temperature T
and salinity S are equal to one at the bottom, y=0, and are zero at the top, y= 1. The vertical walls
x=0 and x=A are such that 07/0x=0S5/0x=0. Finally, no-slip boundary conditions are
considered for the velocity.

We are interested in the stability of the conductive solution Vy=(ug,, v5)=(0,0), T,=1-7y,
So=1—1y; hence, by introducing the perturbation variables

0=T—(1—y), c=S—(1-y) (64)
and assuming the Boussinesq approximation to be valid, the equations of motion are written
00/0t+V-VO—v—AB=0, (65)
0o/0t+V-Vo—v—1Ac=0, (66)
Ow/0t+V Vo — PrAw=Pr(R;00/0x — Ry 06/0x), 67)

AY + =0, (68)
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where Pr is the Prandtl number, Ry and Ry are the thermal and saline Rayleigh numbers
respectively. The time has been normalized by using the thermal time H?/x as reference. The
above equations are solved in the domain D with no-slip conditions y = dy//dn=0 on the whole
boundary and homogeneous boundary conditions for  and g, i.e. #=c=00n y=0and y=1, and
00/0x=00/0x=0 on x=0 and x= 4.

At initial time the conductive solution is perturbed by considering the initial condition

0=0°(x, y)=cos(nx/A)sin(ry), a=0, u=v=0, w=0. (69)

The time discretization scheme makes use of the Adams—Bashforth second-order backward
Euler scheme. Thus, at each time cycle, 8"*! and ¢"** are first calculated independently as the
solution of Helmholtz equations obtained from (65) and (66) respectively. Then the resulting
values are brought into the right-hand side of (67) and (" *!, " 1) is the solution of a Stokes-type
problem. All these equations are solved by the collocation Chebyshev method described in the
previous sections.

9.2. Numerical results

As found in References 30-35, different flow regimes exist according to the values of the physical
parameters: steady or oscillatory (periodic or not) solutions with a possible hysteresis effect. Hence
it is not our purpose here to make a detailed analysis of the problem, which would necessitate not
only many more numerical experiments than we did but also a precise theoretical study. We only
want to illustrate the ability of the method to solve a problem in a situation (small values of the
diffusivity ratio) which has not yet been studied with any other numerical method.

In a first set of experiments we have considered the case already computed in Reference 32 with
A=1,Pr=1,t=01, Rg=2000 and various values of R;. Our numerical results obtained with the
initial condition (69) show the same behaviour as found in Reference 32: for small values of R the
perturbation is damped out and the state is ultimately motionless; for large values of R we obtain
a steady convective flow; between these values there exists a range of R for which the solution is
periodic in time. Table VI give some results: ¥, is the value of the streamfunction at the
collocation point where its absolute value is maximum; N, and Ny are respectively the thermal
and saline Nusselt numbers averaged along the lower horizontal wall. In Table VI the columns (a)
refer to our present results and (b) to the finite difference solution obtained in Reference 32. We
observe some difference in the critical values of the thermal Rayleigh number R as well as in the
values of ¥,,,,, Ny and Ng. The error associated with the first-order finite difference approxima-
tion used in Reference 32 has the effect of increasing the critical value of R;. Moreover, the
difference in the sign of ¥, means that the direction of rotation of the fluid is opposite. In fact, it is

Table VI. Results for A=1, Pr=1, t=01 and Rg=2000: (a)present results;
(b) results of Reference 32

l/Imelx NT NS
Ry (a) (b) (a) (b) @ (b)
4800 0 0 1 1 1 1
4900 0SC. 0 0sC. 1 osC. 1
5000 —2:756 0 1-401 1 3-272 1
5200 —3129 0SsC. 1-483 0sC. 3-439 0SC.
5450 —3463 2-28 1-554 1-36 3-579 355
6000 —4-031 3-20 1-670 1-57 3-797 414
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easy to verify on the steady equations of motion that steady convective solutions with both direct
and indirect rotation are simultaneously possible.

For the periodic solution obtained for R;=4900 the period is found to be 0-545, with
— 1681 <y,,,< 1681, 1-002< N, <1-157 and 1:256 < N3 < 1-625. All the above calculations have
been done with N=M =20 and At=1073.

In Reference 32 the authors reported that they always obtained the same final solution whatever
the chosen initial condition. We have not studied the influence of the initial condition for t=0-1;
on the other hand we did in the case 1=00125 (not studied in Reference 32) and we find an
important sensitivity of the solution to the initial condition 8°(x, y). For example, with 6° given by
(69) we obtain a periodic solution for Ry =4000 (see Table VII), while by using the initial condition

0°(x, y)=cos n(x + n/10)sin n(y+ =/10) (70)

we do not obtain such a periodic solution. More precisely, for Ry <4321 the ultimate solution is
the rest and for R >4322 it is a steady convective state. Note that for these limiting values of Ry
the equations have been integrated up to t=250 (i.e. 3-125 characteristic solutal times). More
calculations would be needed to determine the conditions of existence of oscillatory convection.
Also a careful theoretical study would be necessary to clarify the question of the influence of initial
conditions. At the moment we only want to point out that the initial condition (69) possesses the
symmetry property ¢(x, y)= — ¢(A—x, 1 —y) (where ¢ represents 8, g, u or v), while the condition
(70) does not. The above symmetry property induces an identical one for the solution at
subsequent times and may have an influence on the behaviour of the solution.**** One might
think that such a periodic symmetrical solution is unstable to unsymmetrical perturbations;
however, calculations have shown that the disturbances in the periodic regime created by a small
random perturbation of the thermal field are damped out and the solution again becomes
periodic.

The results presented in Table VII were obtained with the initial condition (69) and 4=1,
Pr=1, 1=00125, Rg=2000 and N=M =40, At=>5x 1074, Figure 4 shows an example of the
steady convective solution. In the case of the periodic solution (R;=4000) the period was found
equal to 1-033 and —1-793 <y, <1:793, 1-002< N <1-194, 2250 < N5 <2999. The graph of
these quantities as a function of time is given in Figure 5. Figure 6, which shows the fields at
various times (not equally spaced) during a period, illustrates the unsteady behaviour of the flow.
The calculations have been pursued up to =100 in this latter case and up to t =250 for R,=3950
and 4050.

From Table VII we notice a change in the direction of the steady flow for R;=4400. This also
occurs for neighbouring values of R;. We recall that steady solutions with rotation in both
directions are possible.

Table VII. Results for 4=1, Pr=1, 7=00125 and

R¢=2000
RT ll/max NT NS
3950 0 1 1
4000 OSC. 0sC. 0sC.
4050 —2-502 1-359 6303
4400 3-007 1472 6795
4600 —3238 1-523 7-002

5000 —3-641 1-608 7-338
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3

Figure 4. Contours of (1) temperature, (2) salinity, (3) streamfunction, (4) vorticity for Pr=1, t=00125, R =2000,
R;=15000 (steady solution)
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Figure 5. Evolution in time of (a), (b) maximum streamfunction, (c) thermal Nusselt number, (d) saline Nusselt number
for Pr=1, 1=00125, Rg=2000, R;=4000 (periodic solution)

Some calculations have also been done with a realistic value of the Prandtl number for salted
water, i.e. Pr=7. We present here some results obtained with the initial condition (69) and 4 =2,
1=00125, Rg=10* and two values of R;. These calculations were carried out with N =60, M =40
and At=5x 10" For Ry =2 x 10* the ultimate solution is the steady convective flow illustrated
in Figure 7. In this case it is clear that the salinity is nearly constant (equal to 1/2) everywhere
except in the neighbourhood of the walls, in particular near the horizontal walls where it exhibits a
boundary layer behaviour. Finally, Figure 8 presents some typical fields at different times
for R;=12x 10* These fields show how complex the salinity structure can become when the



448 U. EHRENSTEIN AND R. PEYRET

M

S=——

% @)
———

_—— (b)
—

F&

-_— (©)
———— (d
S

———

= —

——

Figure 6. Instantaneous contours of (1) temperature, (2) salinity, (3) streamfunction, (4) vorticity for Pr=1, t=00125,
R;=2000, R;=4000 at times (a) 13-52, (b) 13-64, (c) 13-68, (d) 13-72, (e) 13-84, (f) 1404 (periodic solution)

diffusivity ratio is small. This case has not been computed for a time long enough to decide about
the nature of the ultimate state.

All these calculations show how careful one must be when using a direct simulation for studying
multiple solutions. Very often a large integration time is needed to ensure that a periodic or steady
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Figure 7. Contours of (1) temperature, (2) salinity, (3)streamfunction, (4) vorticity for Pr=7, t=00125, Ry=10%,
R;=2x10* (steady solution)
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state, up to the machine accuracy, is actually reached; also the level of accuracy of the calculations
can have an effect on the behaviour of the solution. In these respects an analytical study based on
the theory of stability and bifurcation is a valuable complement to a direct simulation.

10. CONCLUSIONS

A Chebyshev coliocation method has been developed for solving the Navier—Stokes equations
within the vorticity-streamfunction formulation. The efficiency of the method is mainly due to the
influence matrix technique used to prescribe the boundary conditions correctly. Then the
computational effort reduces to matrix products which can be performed efficiently on a vector
computer. The evaluation of the non-linear terms can be done either by matrix products or by the
pseudospectral technique using the fast Fourier transform algorithm. For the time discretization it
has been shown that the finite difference Adams-Bashforth/second-order backward Euler scheme
possesses good properties of stability and accuracy. The accuracy of the spatial Chebyshev
polynomial approximation has been examined on test cases. Finally the capability of the method
to solve a more realistic problem has been proven by computing a double-diffusive convective flow
in a rather delicate situation because of the small value of the diffusivity ratio.

The main advantage of the present collocation method over the tau collocation method
proposed in Reference 20 lies in the fact that ¢ and @ are approximated with polynomials of the
same degree while in the tau collocation case ¢ is approximated with higher-degree polynomials
than w. This produces two different sets of collocation points for i and © and then necessitates a
special numerical treatment for evaluating the normal derivative of ¥ at the boundary and for
computing the non-linear terms by FFT. The present method is free of such difficulties. Moreover,
the collocation influence matrix is better conditioned than the tau collocation one. Finally, as
recognized in several circumstances, the collocation method also possesses other advantages over
the tau method: better accuracy and stability, easier solution of variable coeflicients equations.
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Figure 8. Instantaneous contours of (1) salinity, (2) streamfunction for Pr=7, r=0-0125, Rg=10% Ry =12 x 10* at times

(a) 06, (b) 08, (c) 0-92, (d) 10, (e) 1-08, (f) 1-40 (unsteady solution)
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APPENDIX: COEFFICIENTS OF DERIVATIVE EXPANSIONS (EQUATION (19))

First-order derivative

1 —k(- )k+j
dsv)(k,])z‘_‘——“, OSk,]SN, k#.l’
Cj Xk—xj
dD(k k)= — -
N(k, ) 2(1_x£), 1SkSN 1,
2
40,0= ~dpN, N) =2

where x, =cos(kn/N); ¢o=Cy=2, G, =1, 1<k<N—1.

Second-order derivative

<_1)k+f+1< 2 xpx;— x
(

4Pk, j)=
e N

>, 1<k<N-—1, k#j, 0<j<N,

J

(Nz—l)(l—x,f)+3
3(1—x,%)2 ’

2(—1) @N*+1)(1—x;)—6

d$(0. ==
N ( s]) 3 . (l_xj)z ] =/

J

L 2(=1ITY N2+ 1) (1 +x,)—6
dP(N, j)== r,
N( ]) 3 c—j (1+xj)2
N*—1
15

diP(k, ky=— 1<k<N-—1,

P (0,0)=d{’ (N, N)=

REFERENCES

1. S.A. Orszag and L. C. Kells, ‘Transition to turbulence in plane Poiseuille and plane Couette flow’, J. Fluid Mech., 96,
159205 (1980).

2. P. Moin and J. Kim, ‘On the numerical solution of time-dependent viscous incompressible fluid flows involving solid
boundaries’, J. Comput. Phys., 35, 381-392 {1980).

3. L. Kleiser and U. Schumann, ‘Treatment of incompressibility and boundary conditions in 3-D numerical spectral
simulations of plane channel flows’, in E. H. Hirschel (ed.), Proc. Third GAMM Conf. on Numerical Methods in Fluid
Mechanics, Vieweg, Braunschweig, 1980, pp. 165-173.

4. Y. Morchoisne, ‘Résolution des équations de Navier—Stokes par une méthode spectrale de sous-domaines’, 3eme Conf.
Int. sur les Méthodes Numériques de I'Ingénieur GAMNI, Paris, 14-16 March 1983.

5. J. Ouazzani and R. Peyret, ‘A pseudo-spectral solution of binary gas mixture flows’, in M. Pandolfi and R. Piva (eds),
Proc. Fifth GAMM Conf. on Numerical Methods in Fluid Mechanics, Vieweg, Braunschweig, 1984, pp. 275-282.

6. J. Ouazzani, R. Peyret and A. Zakaria, ‘Stability of collocation-Chebyshev schemes with application to the
Navier-Stokes equations’, in D. Rues and W. Kordulla (eds), Proc. Sixth GAMM Conf. on Numerical Methods in Fluid
Mechanics, Vieweg, Braunschweig, 1986, pp. 287-294.

7. P. Haldenwang, ‘Résolution tridimensionnelle des équations de Navier-Stokes par méthodes spectrales Tchebycheff:
application a la convection naturelle’, Thése Doctorat d'Etat, Université de Provence, Marseille, 1984.



452 U. EHRENSTEIN AND R. PEYRET

8.
9.
10.
1.

12.

13.

14.

15.
16.

i7.
18.
19.
20.
21.
22.
23.
24,
25.
26.
217.

28.
29.

30.
31.
32.
33.

34.
35.

P. Le Quéré and T. Alziary de Roquefort, ‘Computation of natural convection in two-dimensional cavities with
Chebyshev polynomials’, J. Comput. Phys., 57, 210-228 (1985).

M. R. Malik, T. A. Zang and M. Y. Hussaini, ‘A spectral collocation method for the Navier-Stokes equations’, J.
Comput. Phys., 61, 64-88 (1985).

F. Montigny-Rannou and Y. Morchoisne, ‘A spectral method with staggered grid for incompressible Navier—Stokes
equations’, Int. j. numer. methods fluids, 7, 175-189 (1987).

H. C. Ku, T. D. Taylor and R. S. Hirsh, ‘Pseudospectral methods for solution of the incompressible Navier—Stokes
equations’, Comput. Fluids, 15, 195-214 (1987).

B. Bondet de la Bernardie, ‘Contribution a la modélisation et a la simulation numérique du comportement dynamique
et thermique des fluides visqueux par les méthodes spectraies’, Thése Doctorat 3éme cycle, Mécanique des F luides,
Université Aix-Marseille 111, 1980.

F. Elie, A. Chikhaoui, A. Randriamampianina, P. Bontoux and B. Roux, ‘Spectral approximation for Boussinesq
double-diffusion’, in M. Pandolfi and R. Piva (eds), Proc. Fifth GAMM Conf. on Numerical Methods in Fluid
Mechanics, Vieweg, Braunschweig, 1984, pp. 57-64.

J.C. Wuand M. M. Wahbah, ‘Numerical solution of viscous flow equations using integral representations’, Proc. Fifth
Int. Conf. on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, 59, 448-453 (1976).

R. Peyret and T. D. Taylor, Computational Methods for Fluid Flow, Springer Verlag, 1983.

R. Glowinski and O. Pironneau, ‘Numerical methods for the biharmonic equation and for the two dimensional Stokes
problem’, SIAM Rev., 12, 167-212 (1979).

S.C. R. Dennis and L. Quartapelle, ‘Direct solution of the vorticity-stream function ordinary differential equations by
a Chebyshev approximation’, J. Comput. Phys., 52, 448-463 (1983).

S. C. R. Dennis and L. Quartapelle, ‘Spectral algorithms for vector elliptic equations in a spherical gap’, J. Comput.
Phys., 61, 218-241 (1985).

L. Tuckerman, ‘Formation of Taylor vortices in spherical Couette flow’, Ph.D. Thesis, MIT, Cambridge, 1983.

J. M. Vanel, R. Peyret and P. Bontoux, ‘A pseudo-spectral solution of vorticity-stream function equations using the
influence matrix technique’, in K. W. Morton and M. J. Baines (eds), Numerical Methods for Fluids Dynamics 11,
Clarendon Press, Oxford, 1986, pp. 463-475.

U. Ehrenstein, ‘Méthodes spectrales de résolution des équations de Stokes et de Navier-Stokes. Application & des
écoulements de convection double-diffusive’, Thése Doctorat, Mathématiques appliquées, Université de Nice, 1986.
U. Ehrenstein and R. Peyret, ‘A collocation Chebyshev method for solving Stokes-type equations’, Sixth Int. Symp. on
Finite Element Methods in Flow Problems, Antibes, 16-20 June, 1986.

D. B. Haidvogel and T. Zang, ‘The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials’, J.
Comput. Phys., 30, 167-180 (1979).

D. Gottlieb and L. Lustman, ‘The spectrum of the Chebyshev collocation operator for the heat equation’, SIAM J.
Numer. Anal., 20, 903-921 (1983).

P. Haldenwang, G. Labrosse, 8. Abboudi and M. Deville, ‘Chebyshev 3-D spectral and 2-D pseudospectral solvers for
the Helmholtz equation’, J. Comput. Phys., 55, 115-128 (1984).

C. Canuto and A. Quarteroni, ‘Preconditioned minimal residual methods for Chebyshev spectral calculations’, J.
Comput. Phys., 60, 315-357 (1985).

Y. Demay, J. M. Lacroix, R. Peyret and J. M. Vanel, ‘Numerical experiments on stratified fluid subject to heating’,
Third Int. Symp. on Stratified Flow, Pasadena, 3-5 February, 1987.

A. R. Gourlay and D. F. Griffiths, The Finite Difference Method in Partial Differential Equations, Wiley, 1980.

S. A. Orszag and D. Gottlieh, Numerical Analysis of Spectral Methods, Theory and Applications, CBMS Regional
Conference Series in Applied Mathematics, SIAM, 1977.

G. Veronis, ‘Effect of a stabilizing gradient of solute on thermal convection’, J. Fiuid Mech., 34, 315-336 (1968).
H. E. Huppert and D. R. Moore, ‘Nonlinear double-diffusive convection’, J. Fluid Mech., 78, 851-854 (1976).

S. M. Chang, S. A. Korpela and Y. Lee, ‘Double-diffusive convection in the diffusive regime’, Appl. Sci. Res., 39,
301-319 (1982).

E. Knobloch, D. R. Moore, J. Toomre and N. O. Weiss, ‘Transitions to chaos in two-dimensional double-diffusive
convection’, J. Fluid Mech., 166, 409-448 (1986).

E. Knobloch, A E. Deane, J. Toomre and D. R. Moore, ‘Double diffusive waves’, Contemp. Math., 56,203-216 (1986).
A. E. Deane, E. Knobloch and J. Toomre, ‘Traveling waves and chaos in thermolutal convection’, Phys Rev. A, 36,
2862-2869 (1987).



